The MA-Ordering Max-Flow Algorithm is Not Strongly Polynomial
for Directed Networks

Akiyoshi SHIOURA

Graduate School of Information Sciences
Tohoku University
Sendai 980-8579, Japan

shioura@dais.is.tohoku.ac. jp

February 2003; revised April 2003

Abstract

Quite recently, Fujishige (2003) developed a weakly polynomial-time algorithm for the maximum
flow problem by applying the maximum adjacency (MA) ordering technique to directed networks.
In this note, we show that the algorithm is not strongly polynomial by giving a real-valued instance

for which the algorithm does not terminate.

Key words: Maximum flow, MA ordering, Weakly polynomial, Strongly polynomial

1 Introduction

Quite recently, Fujishige [2] applied maximum adjacency (MA) ordering technique to the maximum
flow problem on directed graphs and developed a new weakly polynomial-time algorithm, which we
refer to as the MA ordering algorithm (see also [3]). The most distinguished feature is that the MA
ordering algorithm makes augmentations by using non-path flows while ordinary augmenting path
algorithms use path flows in each augmentation phase.

Then, it is natural to wonder whether the weakly polynomial bound for the MA ordering algorithm
can be strengthened to a strongly polynomial bound. In this note, we show that the MA ordering
algorithm is not a strongly polynomial algorithm. For this, we use the fact that a strongly polyno-
mial algorithm terminates in finite time even for instances with irrational data (cf. [4, 5]). Indeed,
Queyranne [5] showed the maximum-capacity augmenting path algorithm of Edmonds—Karp [1] is not
strongly polynomial by constructing a real-valued instance for which the algorithm does not terminate.
The MA ordering algorithm presents a similar behavior to the maximum-capacity augmenting path
algorithm for some instances, and therefore a slightly modified version of the instance in [5] can be

used for this purpose, as shown in Section 3.

2 The MA Ordering Algorithm

In this section we review the MA ordering algorithm for the maximum flow problem. See [2, 3| for
details.

Let N = (G, s,t,¢) be an instance of the maximum flow problem, where G = (V, A) is a directed
graph with a vertex set V and an arc set A, the vertices s € V and t € V are source and sink vertices,
respectively, and ¢ : A — Ry is a capacity function taking nonnegative real values. A function
¢: A— Ry is called a flow in NV if it satisfies the capacity constraints 0 < ¢(a) < ¢(a) (a € A) and
the flow conservation constraints dp(v) =0 (v € V'\ {s,t}), where

dp(v) =Y wla)— Y pla (veV)

a=(v,w)€A a=(w,v)€EA

For a flow ¢ in AV the value of ¢ is given by 9¢(s) (= —9p(t)). A maximum flow is a flow of maximum
value.

Given a flow ¢ in NV, a residual network N, = (G, s, t, ¢,,) with an underlying graph G, = (V, A,)
and a capacity function ¢, : A, — Ry is defined by

A, =AY UAZ,
Af ={alac A, p(a) <ca)}, Ay ={alac A, ¢(a) >0} (a: areorientation of a),

() = { c(a) ~pla) (a€Ap),
v o(a) (a € A).

We now explain the MA ordering algorithm. The algorithm starts with the zero flow ¢ = 0. In
each iteration, the algorithm constructs a residual network N, associated with the current flow ¢.
Then, the algorithm computes an MA ordering w.r.t. A, which is an ordering {vo, v1,...,v;} of some

of the vertices in V such that vy = s, vp = ¢, and for j = 1,2,..., k the following inequality holds:

Z{c(vi,vj) | (vi,v;) € Ay, i < j} > Z{c(vi,w) | (vi,w) € Ay, i <j} (weV\{vy,vi,...,vj-1}).

Note that the arc set Af, = {(vi,v;) | (vi,v;) € A, 0 <4 < j < k} forms an acyclic subgraph
H, = (V,A]) of G,. Put § = minj<j<p > {c(vi,vj) | (vi,vj) € Ay, i < j}. By the definition of MA
ordering, it is easy to see that there exists a flow ¢ in N, with the value ¢ such that ¢(a) > 0 implies

ac A:D. If § > 0, then the algorithm uses such v to augment the current flow ¢ in N as follows:

p(a) +(a) (a € A and ¢(a) > 0),
p(a) =4 ¢la) —¥(a) (@€ Ag and (@) > 0),
p(a) (otherwise).

If 6 = 0, then the current flow ¢ is a maximum flow, and the algorithm terminates.
If each capacity c(a) is an integer, the MA ordering algorithm terminates in O(nlog nU) iterations
and in O(n(m+nlogn)lognU) time, where n = |V|, m = |A|, and U denotes the maximum capacity

[2]. Hence, the MA ordering algorithm is weakly polynomial.

© Q.2
St
.
S S1
2 0——0—

Figure 1: A bad instance for the MA ordering algorithm

Figure 2: A residual network Nw(” and an acyclic subgraph H o) Arcs in H H(1) are drawn by thick

arrows. Residual capacities of key arcs and their reverse arcs are indicated in the figure.

3 A Bad Instance

In this section, we show a real-valued instance for which the M A ordering algorithm does not terminate.

Consider the network shown in Fig. 1. The source and sink vertices are s and t, respectively.
We call three arcs (4,5),(10,9), (15,14) the key arcs. Capacity of each arc is indicated in the figure.
Define 7 = (/5 — 1)/2. The symbols S;, Sa, and S3 represent the values (1 +7)/2, 1/2, and r/2,
respectively. These numbers satisfy the identities S; —r = 7357, Sy — 12 = 138y, S5 — 13 = 353, and
the inequalities 1 > S1 > 7 > So > 12 > S3 > r3 > §; — r, etc., which are needed to understand the
behavior of the MA ordering algorithm on the network.

Suppose that the MA ordering algorithm is applied to this network with the initial feasible flow
©© = 0. In the first iteration, the algorithm computes an acyclic subgraph H, O of the residual
network Nw(o), which is nothing but an s-t path P; given by

P ={(s,1),(1,4),(4,5),(5,8), (8,10),(10,9), (9,12), (12, 15), (15, 14), (14, 16), (16,) }.

Hence, the algorithm augments § = r units of flow along the path P; to obtain a new flow 90(1).
In the second iteration, the algorithm computes an acyclic subgraph H JGS shown in Fig. 2.

Since H o1 contains a unique s-¢ path P, given by

P, ={(s,2),(2,5),(5,4),(4,6),(6,9),(9,10), (10, 13), (13, 15), (15, 14), (14, 17), (17, ¢) },

Figure 4: A residual network ./\/:p(3k) and an acyclic subgraph H k)

e-o- 7 =06, e -@-@\
(2 () (=2) ()
(3 31 pikt2 \
\ 5 Q 10 _/‘sz? > 5 @0

Figure 5: A residual network N osr+1) and an acyclic subgraph H k1)

the algorithm augments § = r? units of flow along P».
The cyclic pattern occurs from the third iteration. In the 3k-th iteration with £ > 1, the algorithm

computes an acyclic subgraph H,sx-1) shown in Fig. 3 containing a unique s-¢ path P3 given by
Ps ={(s,3),(3,5),(5,4),(4,7),(7,10),(10,9), (9,11), (11, 14), (14, 15), (15, 18), (18, %) },

and augments 6 = ¥ units of flow along Ps.

Similarly in the (3k + 1)-st iteration with &k > 1, the algorithm computes an acyclic subgraph
H 3r) shown in Fig. 4 and augments § = r3F+1 units of flow along Py; in the (3k +2)-nd iteration with
k > 1, the algorithm computes an acyclic subgraph H o(8k-+1) shown in Fig. 5 and augments § = r3++2
units of flow along P». The flow values on the key arcs and the arcs with upper bounds S1, S5, and

S5 change as noted in Table 1. In the [-th iteration, the algorithm augments the flow by !, and the

Table 1: Change of flow when the MA ordering algorithm is applied to the bad instance

flow at the beginning of the iteration
iter. key arcs arcs with upper bound
(4,5) (10,9) (15,14) S1 So Ss
0 0 0 0 0 0
2 r T T T 0 0
3k ik | — 3kl 1 S1(1 — 73F) So(1 —r3F) | S3(1 — r3k=3)
Bk+1 | 0 [r—p3Flo 13 G- 3R) | So(1 - r3R) | Sy(1 - r3R)
3k +2 || r3ktL r 1—p3RF2 | G (1 —p3k43) | Gy (1 — 3k) S3(1 — 73k)
3k +3 7,3k+3 r— 7,31~c+2 1 51(1 . T3k+3) 52(1 _ 7,31~c+3) 53(1 _ TSk)

resulting flow value is 7(1 — r!)/(1 — r). Hence, the flow value converges to r/(1 —), which is equal
to the minimum cut capacity S1 +S2+ S3=1+r.

Therefore, the MA ordering algorithm requires an infinitely many iterations, and is not a strongly
polynomial algorithm. We note that Fujishige’s scaling variant in [2] is developed for integer-valued
instances and requires infinitely many iterations for real-valued instances, as in the case of the ordinary
capacity scaling max-flow algorithm. It is an interesting question whether other variants of the MA

ordering algorithm could be strongly polynomial, which is left for further research.

Acknowledgement

The author thanks Satoru Fujishige and Shigueo Isotani for their comments on this manuscript.
This work is supported by Grant-in-Aid of the Ministry of Education, Culture, Sports, Science and
Technology of Japan.

References

[1] J. Edmonds and R.M. Karp, “Theoretical improvements in algorithmic efficiency for network flow
problems,” J. ACM 19, 248-264 (1972).

[2] S. Fujishige, “A maximum flow algorithm using MA ordering,” Oper. Res. Lett. (2003), to appear.

[3] S. Fujishige and S. Isotani, “New maximum flow algorithms by MA ordering and scaling,”
Proc. 3rd Hungarian-Japanese Symp. on Discrete Mathematics and Its Applications, 186 193
(2003).

[4] S.T. McCormick and A. Shioura, “Minimum ratio canceling is oracle polynomial for linear pro-

gramming, but not strongly polynomial, even for networks,” Oper. Res. Lett. 27, 199 207 (2000).

[5] M. Queyranne, “Theoretical efficiency of the algorithm ‘Capacity’ for the maximum flow prob-
lem,” Math. Oper. Res. 5, 258-266 (1980).

