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1 Introduction

In the area of discrete optimization, one of the important topics is to identify the discrete structure

that guarantees the success of greedy algorithms. As an attempt to do this, various researchers

have proposed discrete analogues of convex functions, or “discrete convex” functions (e.g., [4, 15]).

Among them, the concept of M-convex functions, introduced by Murota [18, 19, 20, 21], affords a nice

framework for well-solved discrete optimization problems with nonlinear objective functions such as

the nonlinear resource allocation problem [12, 14] and the convex cost flow problem [1, 24].

Let V be a nonempty finite set. A function f : ZV → R ∪ {+∞} is said to be M-convex if the

effective domain dom f ⊆ ZV given by

dom f = {x ∈ ZV | f(x) < +∞}

is nonempty and f satisfies

(M-EXC) ∀x, y ∈ dom f , ∀u ∈ supp+(x − y), ∃v ∈ supp−(x− y) such that

f(x) + f(y) ≥ f(x − χu + χv) + f(y + χu − χv),

where χw ∈ {0, 1}V is the characteristic vector of w ∈ V , and

supp+(x− y) = {w ∈ V | x(w) > y(w)}, supp−(x − y) = {w ∈ V | x(w) < y(w)}.

M-convex function is a generalization of separable convex function over the base polyhedron of a

submodular system [7] as well as valuated matroid by Dress–Wenzel [2, 3]. Also, M-convex functions

enjoy various desirable properties as “discrete convexity” such as extendibility to ordinary convex

functions, conjugacy, duality, etc.

In this paper, we consider the minimization of an M-convex function. It is a fundamental problem

concerning M-convex functions, and several algorithms have been proposed so far. The local minimality

implies the global minimality for M-convex functions. Therefore, a minimizer of an M-convex function

can be found by a greedy (or descent) algorithm, which may require exponential time.

The first polynomial-time algorithm is given by Shioura [26]. It is shown that a given vector

x ∈ dom f and a minimizer of f can be separated by using local information around the vector x,

which we call “the minimizer cut property.” Based on this, Shioura developed an O(n4(logL)2)-time

algorithm, where the values n, L are given by

n = |V |, L = max{‖x− y‖∞ | x, y ∈ dom f}. (1.1)

Later, Moriguchi–Murota–Shioura [16] showed a proximity theorem and proposed a scaling ap-

proach for M-convex function minimization. Although the algorithm of Moriguchi et al. can be applied

only to a restricted class of M-convex functions, it runs in O(n3 log(L/n)) time. The scaling approach

of Moriguchi et al. was polished up to a polynomial-time algorithm applicable to general M-convex

functions by Tamura [27]. Tamura showed a common generalization of the minimizer cut property

by Shioura [26] and the proximity theorem by Moriguchi et al. [16], which we call “the minimizer cut
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property with scaling.” Based on this property and intricate analysis, Tamura proved that his scaling

algorithm finds a minimizer in O(n3 log(L/n)) time. Tamura’s algorithm is the fastest so far for the

minimization of a general M-convex function.

The main aim of this paper is to propose two scaling-based fast algorithms for the minimization

of an M-convex function. As in the algorithm by Moriguchi et al. [16], both of our algorithms ap-

ply a scaling technique to a greedy algorithm. Our algorithms are developed on the basis of two

different properties; the one is based on the minimizer cut property, and the other on the mini-

mizer cut property with scaling. We show by simple analysis that our scaling algorithms run in

O((n3 +n2 log(L/n))(log(L/n)/ logn)) time and in O(n 3 log(L/n)) time, respectively. Hence, our first

algorithm is the fastest if L = O(nn), and our second algorithm is as fast as Tamura’s.

As a special case of M-convex function minimization, we also consider the minimization of a sep-

arable convex function over a base polyhedron, which is often called the resource allocation problem

under submodular constraint [12, 14]. Various polynomial-time algorithms have been proposed for

this problem [8, 9, 11, 17]. Currently, the fastest algorithm is the corrected version of Hochbaum’s

scaling algorithm [11] by Moriguchi–Shioura [17] and runs in O(n(logn+F log(B/n)) log(B/n)) time,

where F is the running time of the membership test in a submodular polyhedron, and B is a cer-

tain parameter associated with the constraint of the problem. In this paper, we specialize our scal-

ing algorithms to the resource allocation problem, and show that the resulting algorithms run in

O(n(log n + F log(B/n)) log(B/n)) time and in O(n2(logn + F ) log(B/n2)) time, respectively.

The organization of this paper is as follows. Section 2 is devoted to review a greedy algorithm for

the minimization of an M-convex function. Applying a scaling technique to the greedy algorithm, we

propose two scaling algorithms in Sections 3 and 4. Finally, we specialize our scaling algorithms to

the resource allocation problem in Section 5.

2 A Greedy Algorithm for M-convex Function Minimization

We review a greedy algorithm for M-convex function minimization.

We denote the set of reals and integers by R and Z, respectively. Also, we denote by Z++ the

set of positive integers. Throughout this paper, we assume that f : ZV → R ∪ {+∞} is an M-convex

function with bounded dom f , and that we are given a vector x0 ∈ dom f and an oracle for computing

a function value of f in unit time. We denote by argmin f the set of minimizers of f .

The greedy algorithm, also called the modified steepest descent algorithm [16], iteratively reduces

a set containing a minimizer of f by using the following property.

Theorem 2.1 (minimizer cut property [26, Theorem 2.2]). Let f : Z V → R ∪ {+∞} be an

M-convex function with argmin f 6= ∅, x ∈ dom f and u ∈ V . Suppose that v ∈ V satisfies

f(x + χv − χu) = min
w∈V

f(x + χw − χu). (2.1)

Then, there exists x∗ ∈ argmin f satisfying x∗(v) ≥ x(v) + 1 − χu(v).

The greedy algorithm also uses the following facts on M-convex functions.
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Proposition 2.2. Let f : ZV → R ∪ {+∞} be an M-convex function.

(i) The effective domain S = dom f satisfies the following property:

(B-EXC) ∀x, y ∈ S, ∀u ∈ supp+(x − y), ∃v ∈ supp−(x − y) such that

x − χu + χv ∈ S, y + χu − χv ∈ S.

In particular, we have x(V ) = y(V ) for any x, y ∈ dom f .

(ii) Given a vector l ∈ ZV , define a function fl : ZV → R ∪ {+∞} by

fl(x) =

{
f(x) (x ≥ l),

+∞ (otherwise).
(2.2)

Then, fl is M-convex if dom fl = {x ∈ ZV | x ∈ dom f, x ≥ l} is nonempty.

The greedy algorithm is described as follows. Let x0 ∈ dom f , and L and n be the values given by

(1.1). We maintain a vector l ∈ ZV to represent the set

S(l) ≡ {x ∈ ZV | x ≥ l}

which always contains a minimizer of f . We also maintain a vector x ∈ S(l)∩ dom f .

Algorithm Greedy

Step 0: Put x := x0, l(w) := x0(w)− L (w ∈ V ).

Step 1: If x = l, then output the current x and stop. [x is a minimizer of f ]

Step 2: Choose any u ∈ V with x(u) > l(u).

Step 3: Find v ∈ V satisfying (2.1).

Step 4: Put l(v) := x(v) + 1 − χu(v) and x := x + χv − χu. Go to Step 2.

We have S(l) ∩ arg min f 6= ∅ at Step 0. In each iteration, we reduce the set S(l) by applying

Theorem 2.1 to the M-convex function fl given by (2.2). Proposition 2.2 (i) implies that if x = l then

x is a unique vector in S(l)∩domf . Hence, the output of Greedy is a minimizer of f . To analyze the

number of iterations, we consider the value
∑

w∈V {x(w)− l(w)}, which is at most nL and decreases

at least one in each iteration. Hence, Greedy terminates in nL iterations.

In the following two sections, we apply a scaling technique to Algorithm Greedy and develop two

variants of polynomial-time scaling algorithms.

3 The First Scaling Algorithm

Our first algorithm Scaling1 uses a procedure called ScaledGreedy1(α, x, l). The input of

Procedure ScaledGreedy1(α, x, l) is a scaling parameter α ∈ Z++ and vectors x, l ∈ ZV satisfying

x ∈ S(l)∩ dom f, S(l)∩ arg min f 6= ∅. (3.1)

Procedure ScaledGreedy1(α, x, l) consists of several phases called “Phase-u,” in each of which

we fix the element u ∈ V in Theorem 2.1 and reduce the set S(l) by applying Theorem 2.1 to the
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M-convex function fl given by (2.2). For a vector x ∈ dom f and u, v ∈ V , we define the exchange

capacity ĉ(x; v, u) by

ĉ(x; v, u) = sup{β ∈ Z | x + β(χv − χu) ∈ dom f}.

By Proposition 2.2 (i), we have x + β(χv − χu) ∈ dom f for any β ∈ Z with 0 ≤ β ≤ ĉ(x; v, u).

Procedure ScaledGreedy1(α, x, l)

Step 0: Put V ′ := V .

Step 1: If V ′ = ∅, then output the current x and l, and stop.

Step 2: Choose any u ∈ V ′.

Step 3: [Phase-u starts]

Step 3-1: Find v ∈ V satisfying (2.1).

Step 3-2: [Phase-u ends] If v = u or x(u) = l(u), then put l(u) := x(u), V ′ := V ′ \ {u}.

Go to Step 2.

Step 3-3: [full iteration] If x + α(χv − χu) ∈ dom f and x(u)− α ≥ l(u),

then put l(v) := x(v) + 1, x := x + α(χv − χu), and V ′ := V ′ \ {v}. Go to Step 3-1.

Step 3-4: [partial iteration] Compute the value α ′ = min{ĉ(x; v, u), x(u)− l(u)}.

Put l(v) := x(v) + 1, x := x + α′(χv − χu), and V ′ := V ′ \ {v}. Go to Step 3-1.

Lemma 3.1. Let α ∈ Z++ and x, l ∈ ZV be vectors satisfying the condition (3.1).

(i) When ScaledGreedy1(α, x, l) terminates, the vectors x, l ∈ ZV satisfy the condition (3.1) and

the inequality x(w) − l(w) ≤ α − 1 for all w ∈ V .

(ii) The running time of ScaledGreedy1(α, x, l) is O(n
∑

w∈V {x(w)− l(w)}/α + (n + log2 α)n2).

Proof. (i): The condition (3.1) is satisfied in each iteration, and if w ∈ V is deleted from V ′ in some

iteration, then 0 ≤ x(w)− l(w) ≤ α − 1 holds in the following iterations. Hence, we have the claim.

(ii): We denote by x0, l0 ∈ ZV the vectors x, l given as the input of ScaledGreedy1(α, x, l).

It suffices to show that the running time of Phase-u is O(n{x0(u) − l0(u)}/α + (n + log2 α)n). We

classify the iterations in Phase-u into two types: we call an iteration full if Step 3-3 is performed, and

partial if Step 3-4 is performed.

We first consider full iterations in Phase-u. Each full iteration takes O(n) time. We have x(u) =

x0(u) and l(u) = l0(u) at the beginning of Phase-u. The value l(u) remains the same, and x(u)

does not increase and is at least l(u) during Phase-u. Moreover, x(u) decreases by α in each full

iteration, implying that the number of full iterations is at most {x 0(u) − l0(u)}/α. Hence, it takes

O(n{x0(u) − l0(u)}/α) time for full iterations.

We then analyze the total running time for partial iterations in Phase-u.

Claim. Let x, y ∈ dom f and u ∈ V . Suppose x(u) > y(u) for u ∈ V and x(w) ≤ y(w) for all

w ∈ V \ {u}. Then, we have y + χv − χu 6∈ dom f for all w ∈ V \ {u} with x + χw − χu 6∈ dom f .

[Proof of Claim] Let w ∈ V \ {u} satisfy x + χw − χu 6∈ dom f , and suppose, to the contrary, that

y′ = y + χw − χu ∈ dom f holds. Since w ∈ supp+(y′ − x) and supp−(y′ − x) = {u}, the property

(B-EXC) for y ′, x ∈ dom f implies x + χw − χu ∈ dom f , a contradiction. [End of Claim]
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For each w ∈ V \ {u}, the value x(w) do not decrease in Phase-u, which, together with Claim above,

implies that x(w) increases in at most one partial iteration, i.e., we have at most n−1 partial iterations

in Phase-u. We can compute the exchange capacity ĉ(x; v, u) in O(log2 α) time by binary search since

x + α(χv − χu) 6∈ dom f . Hence, partial iterations take O((n + log2 α)n) time in total.

We now give the description of Algorithm Scaling1. The scaling parameter α is initially set to

ndlog
n
(L/n)e (' L/n), and divided by n at the end of each iteration.

Algorithm Scaling1

Step 0: Compute the value L given by (1.1). Put x := x0, l(w) := x0(w)− L (w ∈ V ),

and α := ndlog
n
(L/n)e.

Step 1: If α < 1 then output x and stop. [The current x is optimal]

Step 2: Use Procedure ScaledGreedy1(α, x, l) to obtain vectors x′, l′ ∈ ZV .

Step 3: Put x := x′, l := l′ and α := α/n. Go to Step 1.

Theorem 3.2. Suppose that a vector x0 ∈ dom f is given. Then, Algorithm Scaling1 finds a mini-

mizer of f in O((n3 + n2 log2(L/n)){log2(L/n)/ log2 n}) time.

Proof. We first show the correctness of the algorithm. The condition (3.1) is satisfied at Step 0. By

Lemma 3.1 (i), the condition (3.1) is also satisfied at the beginning of each iteration. If α = 1, then

the output x′, l′ of ScaledGreedy1(α, x, l) satisfy x′ = l′ by Lemma 3.1 (i). Hence, we have

x′ ∈ argmin f , i.e., the output of Scaling1 is a minimizer of f .

We then analyze the running time. By Lemma 3.1 (i), we have x(w) − l(w) ≤ nα (w ∈ V ) at the

beginning of Step 2 in Algorithm Scaling1. From this inequality and Lemma 3.1 (ii) follows that each

iteration takes O(n3 + n2 log2(L/n)) time. The number of iterations of Scaling1 is O(logn(L/n)) =

O(log2(L/n)/ log2 n), and the value L can be computed in O(n2 log2 L) time by using the fact that

dom f satisfies the property (B-EXC) (see, e.g., [26]). This concludes the proof.

4 The Second Scaling Algorithm

Our second algorithm Scaling2 uses a procedure called ScaledGreedy2(α, x, l), which also main-

tains the set S(l) containing a minimizer and reduces S(l) by exploiting the following property.

Theorem 4.1 (minimizer cut property with scaling [27, Theorem 2.6]). Let f : Z V → R ∪

{+∞} be an M-convex function with argmin f 6= ∅. Also, let x ∈ dom f , u ∈ V , and α ∈ Z++.

Suppose that v ∈ V satisfies

f(x + α(χv − χu)) = min
w∈V

f(x + α(χw − χu)). (4.1)

Then, there exists x∗ ∈ argmin f satisfying x∗(v) ≥ x(v) + α(1 − χu(v))− (n − 1)(α− 1).

Procedure ScaledGreedy2(α, x, l)

Step 0: Put V ′ := V .

Step 1: If V ′ = ∅, then output the current x and l, and stop.
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Step 2: Choose any u ∈ V ′.

Step 3: Find v ∈ V satisfying (4.1).

Step 4: If v = u or x(u)−α < l(u), then put l(u) := max{l(u), x(u)−(n−1)(α−1)} and V ′ := V ′\{u}.

Go to Step 1.

Step 5: Put l(v) := max{l(v), x(v)+ α − (n − 1)(α− 1)}, x := x + α(χ v − χu), and V ′ := V ′ \ {v}.

Go to Step 1.

Lemma 4.2. Let α ∈ Z++ and x, l ∈ ZV be vectors satisfying the condition (3.1).

(i) When ScaledGreedy2(α, x, l) terminates, the vectors x, l ∈ ZV satisfy the condition (3.1) and

the inequality x(w) − l(w) ≤ (n − 1)(α− 1) for all w ∈ V .

(ii) The running time of ScaledGreedy2(α, x, l) is O(n
∑

w∈V {x(w)− l(w)}/α).

Proof. The claim (i) can be shown in a similar way as Lemma 3.1 (i). To prove (ii), we denote by

x0, l0 ∈ ZV the vectors x, l given as the input of ScaledGreedy2(α, x, l). For each w ∈ V the value

x(w) decreases by α at most b{x0(w)− l0(w)}/αc time until w is deleted from V ′ in Step 4 or 5. Since

each iteration requires O(n) time, the claim follows.

We now give the description of Algorithm Scaling2. The scaling parameter α is initially set to

2dlog2(L/2n)e (' L/2n), and divided by two at the end of each iteration.

Algorithm Scaling2

Step 0: Compute the value L given by (1.1). Put x := x0, l(w) := x0(w)− L (w ∈ V ),

and α := 2dlog2(L/2n)e.

Step 1: If α < 1 then output x and stop. [The current x is optimal]

Step 2: Use Procedure ScaledGreedy2(α, x, l) to obtain vectors x′, l′ ∈ ZV .

Step 3: Put x := x′, l := l′ and α := α/2. Go to Step 1.

We can prove the following statement in a similar way as Theorem 3.2 by using Lemma 4.2.

Theorem 4.3. Suppose that a vector x0 ∈ dom f is given. Then, Algorithm Scaling2 finds a mini-

mizer of f in O(n3 log2(L/n)) time.

5 Application to the Resource Allocation Problem

We first explain the resource allocation problem. For any x ∈ ZV and any S ⊆ V , we define x(S) =
∑

w∈S x(w). A function f : Z → R is said to be convex if it satisfies 2f(α) ≤ f(α − 1) + f(α + 1)

for all α ∈ Z. A set function ρ : 2V → Z ∪ {+∞} is called submodular if it satisfies ρ(S) + ρ(T ) ≥

ρ(S ∩ T ) + ρ(S ∪ T ) (S, T ⊆ V ). We define

P(ρ) = {x ∈ ZV | x(S) ≤ ρ(S) (S ⊆ V )},

which is called the submodular polyhedron associated with the submodular function ρ (see [7]).

Given a family of convex functions fw : Z → R (w ∈ V ), a submodular function ρ : 2V → Z∪{+∞}

with ρ(∅) = 0 and ρ(V ) < +∞, and a vector l0 ∈ ZV , we consider the following problem:
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(RAP) Minimize f(x) =
∑

w∈V fw(x(w))

subject to x(V ) = ρ(V ), x ∈ P(ρ), x ≥ l0,

which is called the resource allocation problem under the submodular constraint [12, 14]. In the

following, we assume that (RAP) has a feasible solution, where we note that (RAP) is feasible if and

only if l0 ∈ P(ρ) [7, Theorem 2.3]. We denote by Q∗(ρ, l0) the set of optimal solutions of (RAP).

It is well-known that the resource allocation problem (RAP) can be solved by the following greedy

algorithm (see, e.g., [5, 12, 14]). For each w ∈ V and β ∈ Z, we define ∆f w(β) = fw(β + 1)− fw(β).

Algorithm Greedy RAP

Step 0: Put x := l0.

Step 1: If x + χw 6∈ P(ρ) for all w ∈ V , then output the current x and stop. [x is optimal]

Step 2: Find v ∈ V such that x+χv ∈ P(ρ) and ∆fv(x(v)) = min{∆fw(x(w)) | w ∈ V, x+χw ∈ P(ρ)}.

Step 3: Put x(v) := x(v) + 1. Go to Step 1.

Problem (RAP) is related to M-convex functions as follows. Given an instance of (RAP), we define

a function f̃ : Z
�

V → R ∪ {+∞} by

f̃(x, x(v0)) =





∑

w∈V

fw(x(w)) + Mx(v0) (x ∈ P(ρ), x ≥ l0, x(V ) + x(v0) = 0),

+∞ (otherwise),

(5.1)

where (x, x(v0)) ∈ Z
�

V , Ṽ = V ∪{v0} and M is a sufficiently large positive number. Then, the function

f̃ is M-convex (see [19, 20, 21]), and (x,−x(V )) ∈ argmin f̃ if and only if x ∈ Q∗(ρ, l0). Based on this

fact, we can specialize the scaling algorithms in Sections 3 and 4 to the problem (RAP).

5.1 Specializing the First Scaling Algorithm

We specialize our first scaling algorithm to the problem (RAP). In fact, the resulting algorithm Scal-

ing1 RAP is essentially the same as the corrected version of Hochbaum’s scaling algorithm [17].

The minimizer cut property (Theorem 2.1) for the M-convex function f̃ defined by (5.1) and u = v0

turns into the following property for (RAP):

Theorem 5.1. Let x ∈ P(ρ) be a vector with x ≥ l0. Suppose that v ∈ V satisfies

x + χv ∈ P(ρ), ∆fv(x(v)) = min{∆fw(x(w)) | w ∈ V, x + χw ∈ P(ρ)}. (5.2)

Then, there exists an optimal solution x∗ of (RAP) satisfying x∗(v) > x(v).

Using this property, we specialize Procedure ScaledGreedy1(α, x, l). The input of the spe-

cialized version ScaledGreedy1 RAP(α, l) is a scaling parameter α ∈ Z++ and a vector l ∈ ZV

satisfying

l ∈ P(ρ), l ≥ l0, S(l)∩ Q∗(ρ, l0) = ∅. (5.3)

For a vector x ∈ P(ρ) and an element w ∈ V , we define ĉ(x, w) = sup{β ∈ Z | x + βχw ∈ P(ρ)}.
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Procedure ScaledGreedy1 RAP(α, l)

Step 0: Put x := l.

Step 1: If x + χw 6∈ P(ρ) for all w ∈ V , then output the current l. Stop.

Step 2: Find v ∈ V satisfying (5.2).

Step 3: [full iteration] If x + αχv ∈ P(ρ), then put l(v) := x(v) + 1 and x := x + αχv . Go to Step 1.

Step 4: [partial iteration] Put l(v) := x(v)+1 and x := x+α ′χv with α′ = ĉ(x, v). Go to Step 1.

Note that ScaledGreedy1 RAP(α, l) consists of only one Phase-u with u = v0. We denote

by F the running time of the membership test in the submodular polyhedron P(ρ), where it is noted

that the membership test in P(ρ) can be done in strongly polynomial time by minimizing a certain

submodular function (see [10, 13, 25]).

Lemma 5.2. Let α ∈ Z++ and l ∈ ZV be a vector satisfying the condition (5.3).

(i) When ScaledGreedy1(α, l) terminates, the vectors x, l ∈ ZV satisfy (5.3), x(w)− l(w) ≤ α − 1

(∀w ∈ V ), and x(V ) = ρ(V ).

(ii) The running time of ScaledGreedy1 RAP(α, l) is O((log2 n + F ){ρ(V )− l(V )}/α + (log2 n +

F log2 α)n).

Proof. (i): When the procedure terminates, we have x ∈ P(ρ) and x + χw 6∈ P(ρ) for all w ∈ V ,

implying x(V ) = ρ(V ). The other claims can be shown similarly to Lemma 3.1 (i).

(ii): The value x(V ) is initially equal to l(V ) and at most ρ(V ), from which follows that the

number of full iterations is at most {ρ(V ) − x(V )}/α. We can show that for each w ∈ V the value

x(w) increases in at most one partial iteration, i.e., the number of partial iterations is at most n. Step

2 can be done in O(log2 n) time by using a data structure such as priority queue, and the value ĉ(x, w)

can be computated in O(F log2 α) time. Hence, full and partial iterations take O(log 2 n+F ) time and

O(log2 n + F log α) time, respectively. This concludes the proof of (ii).

In the algorithm Scaling1 RAP, we modify the initialization and the update of the scaling

parameter α to reduce the running time. We put B = ρ(V ) − l0(V ).

Algorithm Scaling1 RAP

Step 0: Put l := l0 and α := 2dlog2(B/2n)e.

Step 1: If α < 1 then output l and stop. [The current l is optimal]

Step 2: Use Procedure ScaledGreedy1 RAP(α, l) to obtain a vector l ′ ∈ ZV .

Step 3: Put l := l′ and α := α/2. Go to Step 1.

Theorem 5.3. Algorithm Scaling1 RAP finds an optimal solution of (RAP) in

O(n(log2 n + F log2(B/n)) log2(B/n)) time.

Proof. Lemma 5.2 (i) implies that ρ(V )− l(V ) ≤ (2α− 1)n holds at the beginning of Step 2 in Scal-

ing1 RAP. From this and Lemma 5.2 (ii) follows that each iteration takes O(n(log 2 n+F log2(B/n)))

time. Since the number of iterations of Scaling1 RAP is O(log2(L/n)), we have the claim.
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5.2 Specializing the Second Scaling Algorithm

We specialize our second scaling algorithm to the problem (RAP). The minimizer cut property with

scaling (Theorem 4.1) for the M-convex function f̃ defined by (5.1) and u = v0 turns into the following

property for (RAP). For w ∈ V , α ∈ Z++, and β ∈ Z, we define ∆(α)fw(β) = fw(β + α) − fw(β).

Theorem 5.4. Let α ∈ Z++, and x ∈ P(ρ) be a vector with x ≥ l0. Suppose that v ∈ V satisfies

x + αχv ∈ P(ρ), ∆(α)fv(x(v)) = min{∆(α)fw(x(w)) | w ∈ V, x + αχw ∈ P(ρ)}. (5.4)

Then, there exists an optimal solution x∗ of (RAP) satisfying x∗(v) ≥ x(v) + α − (n − 1)(α− 1).

Using this property, we specialize Procedure ScaledGreedy2(α, l). The input of the specialized

version ScaledGreedy2 RAP(α, l) is a scaling parameter α ∈ Z++ and a vector l ∈ ZV with (5.3).

Procedure ScaledGreedy2 RAP(α, l)

Step 0: Put x := l.

Step 1: If x + αχw 6∈ P(ρ) for all w ∈ V , then output the current l. Stop.

Step 2: Find v ∈ V satisfying (5.4).

Step 3: Put l(v) := max{l(v), x(v)+ α − (n − 1)(α− 1)} and x := x + αχv . Go to Step 1.

Lemma 5.5. Let α ∈ Z++ and l ∈ ZV be a vector satisfying the condition (5.3).

(i) When ScaledGreedy2 RAP(α, l) terminates, the vectors x, l ∈ ZV satisfy (5.3), x(w)− l(w) ≤

(n − 1)(α− 1) (w ∈ V ), and ρ(V ) − x(V ) ≤ n(α − 1).

(ii) The running time of ScaledGreedy2 RAP(α, l) is O((log2 n + F ){ρ(V )− l(V )}/α).

Proof. We show the inequality ρ(V )− x(V ) ≤ n(α − 1) only. The proof of the other claims is similar

to that for Lemma 5.2. Since P(ρ) is a submodular polyhedron, there exists a vector y ∈ P(ρ) with

y ≥ x and y(V ) = ρ(V ) [7, Theorem 2.3]. Since x + {y(w)− x(w)}χw ∈ P(ρ) and x + αχw 6∈ P(ρ) for

all w ∈ V , we have y(w)− x(w) < α, from which follows ρ(V )− x(V ) = y(V )− x(V ) ≤ n(α− 1).

The following algorithm is a specialized version of Scaling2. Recall that B = ρ(V )− l(V ).

Algorithm Scaling2 RAP

Step 0: Put l := l0 and α := 2dlog2(B/2n)e.

Step 1: If α < 1 then output l and stop. [The current l is optimal]

Step 2: Use Procedure ScaledGreedy2 RAP(α, l) to obtain a vector l ′ ∈ ZV .

Step 3: Put l := l′ and α := α/2. Go to Step 1.

We can show the following theorem in the same way as Theorem 5.3 by using Lemma 5.5.

Theorem 5.6. Algorithm Scaling2 RAP finds an optimal solution of (RAP) in

O(n2(log2 n + F ) log2(B/n)) time.
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6 Concluding Remarks

In this paper, we proposed two fast scaling algorithms for the minimization of an M-convex function.

In fact, these algorithms can be applied to a wider class of functions called semistrictly quasi M-convex

functions introduced by Murota–Shioura [23].

A function f : ZV → R ∪ {+∞} is said to be semistrictly quasi M-convex if dom f is nonempty

and f satisfies the following property:

(SSQM) ∀x, y ∈ dom f , ∀u ∈ supp+(x − y), ∃v ∈ supp−(x − y):

(i) ∆f(x; v, u) ≥ 0 =⇒ ∆f(y; u, v) ≤ 0, and (ii) ∆f(y; u, v) ≥ 0 =⇒ ∆f(x; v, u) ≤ 0,

where ∆f(x; v, u) = f(x−χu +χv)− f(x) for x ∈ dom f and u, v ∈ V . It is easy to see that (M-EXC)

implies (SSQM). We also consider a slightly weaker version of (SSQM):

(SSQM6=) ∀x, y ∈ dom f with f(x) 6= f(y), ∀u ∈ supp+(x− y), ∃v ∈ supp−(x − y):

(i) ∆f(x; v, u) ≥ 0 =⇒ ∆f(y; u, v) ≤ 0, and (ii) ∆f(y; u, v) ≥ 0 =⇒ ∆f(x; v, u) ≤ 0.

The following theorems show that the minimizer cut property (Theorem 2.1) and the minimizer cut

property with scaling (Theorem 4.1), which are the key properties to prove the correctness of our

scaling algorithms, still hold for semistrictly quasi M-convex functions.

Theorem 6.1 ([23, Theorem 4.3]). Let f : ZV → R ∪ {+∞} be a function with (SSQM6=) and

arg min f 6= ∅. Also, let x ∈ dom f and u ∈ V . Suppose that v ∈ V satisfies (2.1). Then, there exists

x∗ ∈ argmin f satisfying x∗(v) ≥ x(v) + 1 − χu(v).

Theorem 6.2 ([27, Theorem 4.4]). Let f : ZV → R ∪ {+∞} be a function with (SSQM6=) and

arg min f 6= ∅. Also, let x ∈ dom f , u ∈ V , and α ∈ Z++. Suppose that v ∈ V satisfies (4.1). Then,

there exists x∗ ∈ arg min f satisfying x∗(v) ≥ x(v) + α(1 − χu(v))− (n − 1)(α − 1).

Hence, both of our scaling algorithms Scaling1 and Scaling2 also work for the minimization of

a semistrictly quasi M-convex function. Note that the effective domain dom f of a function f with

(SSQM6=) does not necessarily satisfy (B-EXC).

Theorem 6.3. Let f : ZV → R ∪ {+∞} be a function with (SSQM6=).

(i) Suppose that dom f satisfies the property (B-EXC) and that a vector x0 ∈ dom f is given. Then,

Algorithm Scaling1 finds a minimizer of f in O((n3 + n2 log2(L/n)){log2(L/n)/ log2 n}) time.

(ii) Suppose that the value L defined by (1.1) and a vector x0 ∈ dom f are given. Then, Algorithm

Scaling2 finds a minimizer of f in O(n3 log2(L/n)) time.
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