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Abstract

The concept of M-convexity for functions in integer variables, introduced by Murota
(1996), plays a primary role in the theory of discrete convex analysis. In this paper, we
consider the problem of minimizing an M-convex function, which is a natural generaliza-
tion of the separable convex resource allocation problem under a submodular constraint
and contains some classes of nonseparable convex function minimization on integer lattice
points. We propose a new approach for M-convex function minimization based on contin-
uous relaxation. By establishing proximity theorems we develop a new algorithm based on
continuous relaxation. We apply the approach to some special cases of the separable con-
vex quadratic resource allocation problem and the convex quadratic tree resource allocation
problem to obtain faster algorithms.
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1 Introduction

The concept of M-convexity for functions in integer variables, introduced by Murota [21, 22],
plays a primary role in the theory of discrete convex analysis [24]. M-convex functions en-
joy various nice properties as “discrete convexity” such as a local characterization for global
minimality, extensibility to ordinary convex functions, conjugacy, duality, etc. We consider
the problem of minimizing an M-convex function, which is the most fundamental optimization
problem concerning M-convex functions. For this problem, various approaches have been pro-
posed to develop efficient algorithms [18, 34, 35, 37]. In this paper, we discuss a continuous
relaxation approach for M-convex function minimization.

M-convex function minimization Let n be a positive integer with n > 2, and put N =
{1,2,...,n}. A function g : Z" — R U {400} in integer variables is said to be M-convez if it
satisfies (M-EXC[Z]):

(M-EXCIJZ]) Vz,y € domgz g, Vi € supp™ (z — ), 37 € supp™ (z — y):
9(z) +9(y) > g(z — xi + x5) + 9y + xi — x;5),

where the effective domain of g is given by domzg = {z € Z" | g(z) < +oc}, supp™(z) =
{i € N | z(i) > 0}, supp (z) = {i € N | z(i) < 0}, and x; € {0,1}" (i € N) denotes the
characteristic vector of i € N, i.e., x;(z) = 1 and x;(j) =0 for j € N \ {i}.

By definition, the effective domain domgz g of an M-convex function g is the set of integral
points in the base polyhedron of some integral submodular system; in particular, domg g lies
on a hyperplane {z € Z" | z(N) = r} for some integer r (see [24, Section 6.1]). In this sense,
the concept of M-convex function can be seen as a generalization of the concept of integral base
polyhedron. M-convex function is also an extension of valuated matroid introduced by Dress
and Wenzel [3]; a function g : Z" — R U {+o0} is a valuated matroid if and only if —g is an
M-convex function with domgz g C {0,1}".

In this paper, we consider the minimization of an M-convex function g : Z" — R U {4o00}:

(MC) Minimize g(x) subject to z € domgg.
Below we give two important special cases of the problem (MC).

Example 1.1 (Resource allocation problem under a submodular constraint). Let f; : R - R
(i € N) be a family of univariate convex functions. Also, let p : 2V — Z, U {+oco} be a
nonnegative-valued submodular function, i.e., p satisfies p(X) + p(Y) > p(X NY) + p(X UY)
for every X,Y € 2V. We assume p(()) = 0 and p(N) < +oo. The (separable convex) resource
allocation problem under a submodular constraint [6, 11, 14, 16] is formulated as follows:

(SC) | Minimize Y fi((i))
i=1
subject to z(N) = p(N), z(Y) < p(Y) (VY € 2V),
x>0, ze€Z



where z(Y) = ),y z(i) for Y € N and 0 = (0,0,...,0) € Z". A very special case of (SC) is
the simple resource allocation problem [6, 14, 16] formulated as follows:

n
(Simple) Minimize Zfz(x(z)) subject to z(N)=K, 0<z <u, x € Z",
i=1

where K € Z and v € Z7. The problem (SC) is extensively discussed in the literature; see
[6, 14, 16] for comprehensive review of this problem and [7, 10, 11, 12] for efficient algorithms.
The problem (SC) is a special case of (MC) since the function gsc : Z" — RU{+o0} defined
by
oy filz(i)) (if x € Z" is a feasible solution to (SC)),
gsc(e) = { +00 (otherwise)

satisfies (M-EXC[Z]) (see [22, Example 2.2], [24, Section 6.3]). O

Example 1.2 (Laminar convex resource allocation problem). Let F C 2V be a laminar family,
i.e., for every X, Y € F either X CY, X DY, or XNY = 0 holds. Note that |F| = O(n). We
consider the following minimization problem with a nonseparable convex objective function:

(Laminar) | Minimize Z fy(z(Y))
YeF
subject to z(N) =K, by <z(Y) <uy (Y € F),
x>0, ze€Zm

where fy : R — R (Y € F) is a family of univariate convex functions, K € Z,, and ¢y, uy €
Z, for every Y € F. We call this problem the laminar convez resource allocation problem.
The problem (Laminar) is a special case of (MC) since the function gpaminar : Z" — R U {400}
defined by

Yyverfr(@(Y)) (z € Z"is a feasible solution to (Laminar)),
gLaminar(fL') = .
+00 (otherwise)

satisfies (M-EXC[Z]) (see [18, Example 2.3|, [24, Section 6.3]). The problem (Laminar) is an
important special case of (MC) since the objective function is nonseparable and continuous
relaxation approach proposed in this paper can be applied in a natural way. ]

For the problem of minimizing an M-convex function, various approaches have been pro-
posed to develop efficient algorithms [18, 34, 35, 37], and the best time complexity bounds are
O((n?® +n2log(L/n))(log(L/n)/logn)F) and O(n?log(L/n)F), where L is an upper bound on
the L, distance between two vectors in domg g, i.e.,

L = max{||z — y||o | 7,y € domz g}, (1.1)

and F' denotes the time to evaluate the function value of the M-convex function g. In this
paper, we consider a new approach for M-convex function minimization based on continuous

relaxation.



Continuous relaxation Continuous relaxations of (5C) and (Laminar) can be naturally ob-
tained by removing the integrality constraint “z € Z™.” Indeed, a continuous relaxation
approach for solving (SC) is proposed by Hochbaum [11] (see also Hochbaum and Hong [12]),
and the approach is applied to obtain efficient algorithms for some important special cases of
(SC) with quadratic objective functions by Hochbaum and Hong [12].

The continuous relaxation approach consists of the following three major steps:

Step 1: Compute an optimal solution z, € R" to the continuous relaxation problem.

Step 2: Round the optimal solution z, to an integral vector y° € Z".

Step 3: Using y° as an initial solution, compute an optimal solution y, € Z™ to the original
problem by a greedy algorithm.

In this paper, we extend such approach to M-convex function minimization. Although this
approach cannot possibly provide a faster algorithm for the general case of (MC), it is shown
that faster algorithms can be obtained for some important special cases of (MC).

To extend the continuous relaxation approach to the problem (MC), we need to define a
continuous relaxation of (MC) in an appropriate way. In this paper, we define a continuous
relaxation of (MC) by using the concept of M-convex function in real variables introduced by
Murota and Shioura [29]. A function f : R — R U {400} in real variables is said to be
M-convez if it is convex and satisfies (M-EXC[R]):

(M-EXCIJR]) Vz,y € domg f, Vi € supp™ (z—y), 3j € supp (z—y), Jag > 0:

f@) + fy) 2 fle—alxi —x5)) + [y + el —x5)  (Yag[0, aol),

where domg f = {z € R" | f(z) < +00}. An M-convex function is said to be a closed proper
M-convez function if it is a closed proper convex function, in addition (the definition of closed
proper convex functions is given in Section 2). M-convex functions in real variables constitute a
subclass of convex functions with additional combinatorial properties such as supermodularity
and local polyhedral structure (see, e.g., [24, 28, 29, 30, 31]). Fundamental properties of M-
convex functions are investigated in [30], such as equivalent axioms, subgradients, directional
derivatives, etc.

It is known (see, e.g, [24, Section 6.11]) that for every M-convex function g : Z"™ — RU{+o0}
in integer variables, there exists a closed proper M-convex function f : R" — R U {400} in
real variables such that f(x) = g(x) (V& € Z™). Using such an M-convex function f in real
variables, we define a continuous relaxation of (MC) as follows:

(MC) Minimize  f(x) subject to =z € domg f.
We note that continuous relaxations of (SC) and (Laminar) can be also formulated in this form
by using functions fsc : R” — R U {400} and fiaminar : R” = R U {400} which are defined
in the same way as gsc and graminar in Examples 1.1 and 1.2, where “x € Z™” is replaced
with “z € R™.” It should be mentioned that fsc and f|aminar are M-convex functions in real
variables satisfying fsc(z) = gsc(x) and fLaminar(Z) = gLaminar(x) for all z € Z".



Our results Efficiency of algorithms based on continuous relaxation depends on the distance
between optimal solutions to the original problem and to its continuous relaxation, and so-called
“proximity theorem” provides a theoretical guarantee for the closeness of these two kinds of
optimal solutions. The main result in this paper is a proximity theorem for the problem (MC),
stating that the Ly, distance between optimal solutions to (MC) and to its continuous relaxation
(MC) is bounded by n — 1.

Theorem 1.3 (Proximity theorem for (MC) with respect to the Ly, distance).

(i) For every optimal solution y, € Z™ to (MC), there exists an optimal solution x, € R™ to
(MC) such that ||7. — yulloo <n — 1.

(ii) For every optimal solution x,. € R™ to (MC), there exists an optimal solution y. € Z" to
(MC) such that ||y — Zulloo < n — 1.

The proof of this theorem is given in Section 4. This theorem implies, in particular, that there
exists an optimal solution to (MC) if and only if there exists an optimal solution to (MC). In
Section 4 we also give an example to show that the bound » — 1 in Theorem 1.3 is the best
possible, even for a very simple special case.

We then give some proximity results with respect to the Ly distance. As an immediate
corollary of Theorem 1.3, we obtain the following result for (MC):

Corollary 1.4 (Proximity theorem for (MC) with respect to the L; distance).

(i) For every optimal solution y, € Z™ to (MC), there exists an optimal solution x, € R™ to
(MC) such that ||z, — yi|1 < n(n —1).

(ii) For every optimal solution xz, € R™ to (MC), there exists an optimal solution y, € Z" to
(MC) such that ||ys — z«][1 < n(n —1).

We show that the bound n(n — 1) for the general case can be reduced to 2(n — 1) for the two
special cases (SC) and (Laminar). We denote by (SC) and (Laminar) the continuous relaxation
of (SC) and (Laminar), respectively.

Theorem 1.5 (Proximity theorem for (SC) with respect to the L; distance).

(i) For every optimal solution y. € Z™ to (SC), there exists an optimal solution . € R™ to
(SC) such that ||z, — y«|l1 < 2(n —1).

(ii) For every optimal solution x. € R™ to (SC), there exists an optimal solution y. € Z™ to
(SC) such that ||y« — z«|1 < 2(n —1).

Theorem 1.6 (Proximity theorem for (Laminar) with respect to the L; distance).

(i) For every optimal solution y. € Z™ to (Laminar), there exists an optimal solution x, € R"™
to (Laminar) such that ||z, — y.|j1 < 2(n — 1).

(ii) For every optimal solution x, € R™ to (Laminar), there exists an optimal solution 1y, € Z"
to (Laminar) such that ||y, — |1 < 2(n —1).

The proofs of Theorems 1.5 and 1.6 are given in Section 4. We also show in Section 4 the
tightness of the bound 2(n — 1) in Theorems 1.5 and 1.6 by using a simple example. A
proximity statement for the problem (SC) similar to Theorems 1.5 is already presented in [11];
we point out the incorrectness of the proximity statement in [11] by giving a counterexample
in Section 2.



Finally, we propose an algorithm for (MC) based on continuous relaxation in Section 3.
Our algorithm is a natural extension of the continuous relaxation algorithm of Hochbaum
[11], where we use a new greedy-type algorithm for (MC). We analyze the time complexity of
the proposed algorithm by using the proximity theorems shown in this paper and obtain the
following result, where Tyeax denotes the time required for solving the continuous relaxation
(MC), and T,oung denotes the time to round a given feasible solution 2 € R” of (MC) to a
feasible solution y € Z" of (MC) satisfying ||y — z||1 < n. We note that Tyoung = O(n?log L)
(see [34]), where L is given by (1.1).

Theorem 1.7. Our algorithm based on continuous relazation finds an optimal solution to (MC)
mn O(Trelax + Tround + TLSF) time.

Remark 1.8. In fact, we do not need an exact optimal solution of the continuous relaxation
(MC); it suffices to compute an “approximate” optimal solution z, € R" of (MC) in the
sense that ||z4 — Z4||sc < m holds for some optimal solution z, € R™ of (MC). We denote
by Trelax-apx the time required for computing such z. Usually, Trelax-apx is smaller than Tiejax.
Then, Theorem 1.3 implies that there exists an optimal solution y, € Z™ of (MC) satisfying
lye — Zalloo < lys — Zilloo + |2+ — Zalloo < 2n. By using this bound, we can show in a similar
way as Theorem 1.7 that (MC) can be solved in O(Tyejax-apx + Tround + 7> F) time.
Computation of an (approximate) optimal solution z, of (MC) can be done by using similar

algorithmic approaches as (MC). For example, we can apply the scaling approach for (MC)
used in [35] to (MC) to obtain an O((n® + n?log(L/n))(log(L/n)/logn)F)-time algorithm
for computing an approximate optimal solution, provided that the directional derivative of the
objective function f can be computed in O(F') time. This implies that our continuous relaxation
algorithm runs in O((n3 + n?log(L/n))(log(L/n)/logn)F) time. This time complexity bound
is the same as the one of the previous best time complexity bound for (MC), i.e., the continuous
relaxation approach does not lead to the reduction of the time complexity for the general case
of (MCQ).

Although the continuous relaxation approach cannot possibly provide a faster algorithm for
the general case of (MC), faster algorithms can be obtained for some special cases of (MC) by
using the continuous relaxation approach. Indeed, we apply the continuous relaxation approach
to (Laminar) and some special cases of (SC) with quadratic objective functions, in a similar
way as in Hochbaum and Hong [12]. It is known that various classes of convex quadratic
optimization problems in real variables can be solved in strongly polynomial time (see, e.g.,
[2, 12, 36]). Using this fact and also devising efficient implementations of the continuous
relaxation approach, we show that (Laminar) and some special cases of (SC) with quadratic
objective functions can be solved efficiently in strongly polynomial time.

The previous best time complexity bound for (Laminar) is O(n?) by Tamir [36], which is
also based on a continuous relaxation approach with a weaker proximity theorem in [9]. We
present a better time complexity by using a refined proximity theorem (Theorem 1.6) and some
algorithmic techniques.

Theorem 1.9. The problem (Laminar) can be solved in O(n?) time if the objective function is
quadratic.



Hochbaum and Hong [12] develop efficient algorithms for some special cases of (SC) with
quadratic objective functions. Then, they state in their paper [12] that the corresponding
special cases of (SC) can be solved efficiently in strongly polynomial time by using a proximity
result in [11]. The proximity result, however, is incorrect, as pointed out in Section 2.4, and
therefore the time complexity results for the special cases of (SC) are no longer valid.! We
show that by using our proximity theorem (Theorem 1.5), the special cases of (SC) discussed
in [12] can be solved in (almost) the same time complexity as stated in [12] (see Section 3.4 for
details). In particular, our algorithms are the fastest for the special cases of (SC).

Organization The organization of this paper is as follows. In Section 2, we explain funda-
mental concepts related to submodular functions and M-convex functions, and give formulations
of discrete convex optimization problems discussed in this paper. In Section 2, we also review
the continuous relaxation approach for discrete convex optimization problems, including the
resource allocation problems. In Section 3, we propose an algorithm for (MC) based on con-
tinuous relaxation, and apply it to (Laminar) and some special cases of (SC) with quadratic
objective functions to obtain efficient algorithms. Finally, proofs of the proximity theorems are

given in Section 4.

2 Preliminaries

2.1 Definitions and notation

Throughout the paper, let n be a positive integer with n > 2 and put N = {1,2,...,n}.

We denote by R (resp., by R, ) the sets of real numbers (resp., nonnegative real numbers).

Similarly, we denote by Z (resp., by Z) the sets of integers (resp., nonnegative integers).
Let z = (x(1),2(2),...,z(n)) € R™ be a vector. We denote

supp’(z) = {i € N | z(i) > 0}, supp (z) ={i € N | z(i) < 0}.

For a subset Y C N, we denote z(Y) =,y z(i). We define

Izl = max ()], llzfls = > la(@)l.

1EN
The vectors [z], [z| € Z™ are given by

(Tl2D(@) = Tz@1,  (l=)@) = l=®] (e N).

We define 1 = (1,1,...,1) € Z™ and 0 = (0,0,...,0) € Z". For Y C N, we denote by
Xy € {0,1}" the characteristic vector of Y, i.e., xy (i) = 1 if i € Y and xy (i) = 0 otherwise. In
particular, we denote x; = xy;; for every ¢ € N. Inequalities and equalities for vectors z,y € R"
mean component-wise inequalities and equalities; for example, x < y reads z(i) < y(i) for all
i € N. For a nonempty set S C R", the closed convez hull (or convezx closure) of S is the
(uniquely determined) smallest closed convex set containing S.

'The time complexity results for special cases of (SC) in [12] are independent of the incorrect proximity result
in [11] and therefore remains valid.



Let f : R — R U {+o0} be a function. The effective domain domg f of f is defined
by domg f = {x € R" | f(z) < +o00}. A function f is said to be convez if its epigraph
{(z,a) e R" xR | a@ > f(x)} is a convex set. A convex function f is said to be proper if the
effective domain dompg f is nonempty, and closed if its epigraph is a closed set. We denote the
set of minimizers of f by

argming f = {z € R" | f(z) < f(y) (Vy € R")}.

Note that for a closed proper convex function f, the set arg ming f is a closed set.
For a function g : Z™ — R U {400} defined on the integer lattice points, we define the
effective domain domgz g and the set of minimizers arg ming g by

domzg = {z€Z"|g(z) < +oo},
argmingg = {z €Z"[g(r) <g(y) (Vy € Z")}.

2.2 Base polyhedra, M-convex sets, and M-convex functions

In this section we explain the concepts of base polyhedra, M-convex sets, and M-convex func-
tions. We refer to [6, 24] for comprehensive treatment of these concepts.
A set function p : 2V — R U {400} is said to be submodular if it satisfies the submodular
inequality:
p(X)+p(Y)>p(XNY)+p(XUY) (VX,Y e€2M).

For a submodular function p : 2V — R U {+o00} with p(#)) = 0 and p(N) < +o00, we consider a
polyhedron

B(p) = {x € R | 2(Y) < p(Y) (VY €2V), 2(N) = p(N)},

which is called the base polyhedron associated with p. It is known that if p is an integer-
valued function, then B(p) is an integral polyhedron, i.e., the closed convex hull of the set
of integral points in B(p) coincides with B(p). For an integer-valued submodular function
p: 2V = ZU{+o0o} with p(#) = 0 and p(N) < +oo, we consider the set S = B(p) N Z" of
integral vectors in a base polyhedron, which we call an M-convez set.

Base polyhedra and M-convex sets can be characterized by the following exchange properties
(see, e.g., [4], [6, Corollary 20.6], [24, Section 4], [30, Theorem 3.1]).

Theorem 2.1.
(i) A nonempty closed set S C R™ is a base polyhedron if and only if it satisfies (B-EXC[R]):

(B-EXCJ[R]) Vz,y € S, Vi € suppt (z—y), Ij € supp™ (z—y), Jag > 0 :
z—oalxi—xj) €S, y+alxi—xj) €S (Vael0, ap)).
(ii) A nonempty set S C Z" is M-convez if and only if it satisfies (B-EXC[Z]):
(B-EXCJZ]) Vz,y € S, Vi € supp™ (z — y), 3j € supp (z —y) :

r—Xi+Xx; €5, y+xi —Xxj €S



An M-convex set S with S C {0,1}" is essentially equivalent to the concept of matroid in
the following sense: a nonempty set S C {0,1}" is M-convex if and only if S = {xy € {0,1}" |
Y € B} holds for the base family B C 2V of some matroid M = (N, B).

We consider a function g : Z" — R U {400} defined on integer lattice points. A function g
with nonempty domg g is said to be M-convez if it satisfies (M-EXC[Z]):

(M-EXCIJZ]) Vz,y € domgzg, Vi € supp™ (z —y), 37 € supp (z — y):
9(@) +9(y) > g(z — xi + x5) + 9(y + xi — X5)-

From the definition and Theorem 2.1 (ii), the effective domain domz g of an M-convex function
g is an M-convex set. In particular, there exists some r € Z such that domg g is contained in
the hyperplane {z € Z" | x(N) = r}. A set S C Z" is M-convex if and only if its indicator
function dg : Z™ — {0,400} defined by

55(95):{ 0 (z€8),

+oo  (otherwise),
is M-convex.

Remark 2.2. The concept of M-convex function is deeply related to submodularity /supermodularity
in the following sense (see also Lemma 4.2 in Section 4).

Since the effective domain of an M-convex function is contained in a hyperplane {z € Z" |
z(N) = r} for some r € Z, we may consider the projection ¢’ : Z""! — R U {+oco} of an
M-convex function g : Z" — R U {+oc} along an arbitrarily chosen coordinate axis k € N,
where the projection ¢’ of g is a function in n — 1 variables defined by

g (x),...,z(k—1),z(k+1),...,7(n))
= g(z(1),...,z(k = 1),r —x(N \ {k}),z(k +1),...,z(n)).

A function ¢’ obtained by the projection of an M-convex function is called an M?-convesx function
[27]. Tt is known that an Mf-convex function is a supermodular function on the integer lattice
points, i.e., it satisfies the following inequality [24, Theorem 6.19]:

9(x) +9y) <gleVy)+g(zAy)  (Ya,y €Z),
where for z,y € R" the vectors x Vy € R"™ and £ Ay € R" are defined by
(z Vy)(i) = max{z(z),y(0)}, (2 Ay)(i) =min{z(i),y(i)} (i€ N).

We note that the supermodular inequality is void for an M-convex function g because zVy,x A
y € domg g occurs only when z =y € domzg g. O

The concept of M-convex function is extended to functions defined on the real space R"™.
A function f : R" — R U {400} with nonempty domg f is said to be M-convez if it is convex
and satisfies (M-EXC[R]):

(M-EXCIJR]) Vz,y € domg f, Vi € supp™ (z—y), 3j € supp (z—y), Jag > 0:

f@)+ fly) > flz—alxi —x;3) + fly+alxi —x;)  (Yagl0, ag)).



An M-convex function is said to be a closed proper M-convex function if it is a closed proper
convex function, in addition. From the definition and Theorem 2.1 (i), the effective domain
dompg f of an M-convex function f is a base polyhedron if domg f is a closed set. In particular,
there exists some r € R such that dompg f is contained in the hyperplane {x € R" | z(N) = r}.
A set S C R" is a base polyhedron if and only if its indicator function dg : R" — {0,400}

defined by
0 (z €8)
) = ’
s(@) { +oo  (otherwise),

is a closed proper M-convex function.

2.3 M-convex function minimization and resource allocation problems

We explain the formulations of the problem of M-convex function minimization and resource
allocation problems discussed in this paper. In addition, we explain the continuous relaxation
of each problem.

M-convex function minimization The problem of M-convex function minimization is for-
mulated as follows:

(MC) Minimize g(x) subject to z € domgg,

where g : Z" — RU{+00} is an M-convex function. The following property is useful in defining
a continuous relaxation of (MC).

Theorem 2.3 (cf. [24, Section 6.11]). For every M-convez function g : Z" — RU{+o00}, there
exists a closed proper M-convez function f : R"™ — R U {400} such that f(x) = g(z) for all
x € Z" and domg f is the closed convezx hull of domg g.

Based on this property, we define a continuous relaxation (MC) of (MC) by
(MC) Minimize  f(x) subject to =z € domg f,

where f: R" - RU {400} is a closed proper M-convex function such that f(z) = g(z) for all
z € Z" and domg f is the closed convex hull of domg g.

We then explain two important special cases of (MC): the laminar convex resource allocation
problem (Laminar) and the resource allocation problem under a submodular constraint (SC).

Laminar convex resource allocation problem The laminar convex resource allocation
problem is formulated as follows (see [18], [24, Section 6.3]):

(Laminar) | Minimize Z fr(z(Y))
YeF
subject to z(N) =K, by <z(Y) <uy (Y € F),
x>0, ze€Z"

where F C 2%V is a laminar family, fy : R — R (Y € F) is a family of univariate convex
functions, K € Z, and fy,uy € Z; (Y € F). Note that |F| = O(n). Throughout the paper we
assume that the problem (Laminar) has a feasible solution. The continuous relaxation (Laminar)
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of (Laminar) is obtained by removing the integrality constraint “z € Z™” from (Laminar). We
assume, without loss of generality, that

0gF, NeF, {i}eF (VieN). (2.2)

It is known that the problem (Laminar) can be reformulated as a convex cost flow problem
on a tree network, as explained below.

For Y € F\{N}, we call X € F the parent of Y if X is the unique minimal set in F which
properly contains Y (i.e., X DY and X # Y'), and denote by p(Y') the parent of Y. For X € F
with | X| > 2, we call Y € F a child of X if X = p(Y). The condition (2.2) implies that every
X € F with |X| > 2 has at least one child. We consider a (directed) tree graph T' = (V, A)
defined by

V={vy |Y € F}, A={(vx,vy) | X,Y € F, Y is a child of X}.

Hence, the node vy is the root node of T', while nodes corresponding to the singleton sets are
leaf nodes of T'. In the convex cost flow formulation, we send flow from the root node vy to
leaf nodes. That is, v is the source node and leaf nodes are sink nodes. We use a flow variable
©(i,7) for each arc (i,7) € A, and consider the integrality constraint on flow variables

o(i,j) €Z  (Y(i,5) € A)
and flow balance constraints
Z{‘P(UNaUY) vy €V, (vn,vy) € A} = K,
> {elwx,vy) vy €V, (vx,vy) € A = @(uyx),vx)  (Vox €V, vx £ o).

We see from the flow balance constraints that the value of the flow variable ¢(v,y,vy) corre-
sponds to the value z(Y') for every Y € 7\ {N}. For each arc (v,y,vy) € A, the convex cost
function of the arc is given by fy and the lower and upper capacity of the arc are ¢y and uy,
respectively. It is easy to see that the problem (Laminar) is equivalent to the convex cost flow
problem defined above, and (Laminar) is equivalent to the continuous relaxation of the convex
cost flow problem obtained by removing the integrality constraint on flow variables.

Resource allocation problem under a submodular constraint The resource allocation
problem under a submodular constraint (SC) is formulated as follows [6, 11, 14, 16]:

(SC) | Minimize Y _ fi(x(i))
i=1
subject to  z(N) = p(N), z(Y) < p(Y) (Y € 2V),
x>0, xeZ",

where f; : R — R (i € N) is a family of univariate convex functions, and p : 2V — Z, U{+o0}
is a nonnegative-valued submodular function satisfying p(#) = 0 and p(N) < +oc.

We also consider special cases of (SC) discussed in [11, 12]. The simple resource allocation
problem (Simple) reads as

n
(Simple) Minimize Zfz(m(z)) subject to z(N)=K, 0<z <wu, x € Z",
i=1

11
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Figure 1: Relationship among the discrete convex optimization problems

where f; : R — R (i € N) is a family of univariate convex functions, K € Z,, and u € Z7}.

The other special cases of (SC) in [11, 12] can be obtained by adding some constraints
to (Simple). The generalized upper bound resource allocation problem (GUB) is obtained by
adding to (Simple) the constraints z(S;) = ug, (¢t = 1,2,...,m), where {S1,S9,...,S,} is
a partition of N, and ug, € Z; (t = 1,2,...,m). The nested resource allocation problem
(Nest) is obtained by adding to (Simple) the constraints z(S;) = ug, (¢t = 1,2,...,m), where
{81, S2,...,Sn} is a family of nested subsets of N, i.e., it satisfies the condition () # Sy C Sy C

- C Sy, CN,and us, € Z4 (t =1,2,...,m). The tree resource allocation problem (Tree)
is obtained by adding to (Simple) the constraints z(Y) = uy (Y € F), where F(C 2V) is a
laminar family and uy € Z; (Y € F). Hence, (Tree) is also a special case of (Laminar).

The network resource allocation problem (Network) is defined by using a network with a
single source and multiple sinks. Given a directed graph G = (V, A) with node set V' and arc
set A, let s € V be the unique source node and N = {1,2,...,n} (C V) be the set of sink
nodes. The supply of the source is given by K € Z,, and the capacity of each arc (i,5) € A
is given by c(i,j) € Z,. Using flow variables {¢(i,7) | (¢,j) € A} in addition to variables
{z(i) | i € N}, the constraints of the problem (Network) is described as follows:

{0(i,§) |j €V, (i,j) € A} =D {p(j.i) | €V, (i) € A} =0 (VieV\({s}UN)),
$,0) 17 €V, (s,5) €A} =Y {oli,s) | €V, (j,s) € A} = K,

|G €V, (i,5) € A} = {p(G,i) |5 €V, (j,i) € A} = —x(i) (Vi € N),
(i,5) (V(i,j) € A), 0 <z <wu, z€Z"

FjM

7)
7) <c(i
It is easy to see that the constraints above imply 2(N) = K. The relationship among the
discrete convex optimization problems explained above is summarized in Figure 1.

For the problems (SC), (Simple), (GUB), (Nest), (Tree), and (Network), we denote by (SC),
(Simple), (GUB), (Nest), (Tree), and (Network), respectively, the continuous relaxation which
can be obtained by removing the integrality constraint “x € Z™.”
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2.4 Review of continuous relaxation approach for discrete convex optimiza-
tion problems

In this section we review the existing results on continuous relaxation approach for M-convex
function minimization, resource allocation problems, and related problems.

Simple resource allocation problem Weinsten and Yu [38] (see also [14, Section 4.6])
propose an algorithm for (Simple) based on continuous relaxation, and the time complexity
of the algorithm is O(T's; . (n) + nlogn), where T'g . (n) denotes the time complexity for
solving the continuous relaxation (Simple) with n variables. A proximity theorem for (Simple)
is implicit in [38], which states that for every optimal solution z, € R™ of (Simple), there exists
an optimal solution y, € Z" of (Simple) satisfying ||y« — z.||1 = O(n). Later, Ibaraki and
Katoh [14, Section 4.6] improve the algorithm of Weinsten and Yu [38] by using the technique
of Frederickson and Johnson [5] so that it runs in O(Tgog (n) + n) time. If the objective
function is quadratic, then (Simple) can be solved in linear time by the algorithm by Brucker
[2], and therefore (Simple) can be solved in O(n) time by the algorithm of Ibaraki and Katoh
[14, Section 4.6].

Hochbaum [11] shows that the problem (GUB) can be reduced to the problem (Simple)
by solving a “disjoint” family of the problems (Simple) which can be obtained from the given
instance of (GUB). It follows from this observation that the problem (GUB) with quadratic
objective function can be solved in O(n) time as well.

Separable convex function minimization under linear constraints Hochbaum and
Shanthikumar [13] apply continuous relaxation approach to the following separable convex
function minimization problem under linear constraints and integrality constraint:

(IP) Minimize Y fi(z(i)) subjectto Az>b, =z¢€Z",
=1

where f; : R — R (i € N) is a family of univariate convex functions, A is an integral m x n
matrix, and b € Z™. We denote by A € Z the maximum absolute value of a subdeterminant
of the matrix A. For this problem the continuous relaxation (IP) can be easily obtained by
removing the integrality constraint “z € Z".” It is easy to see that each of the problems
(Simple), (GUB), (Nest), (Tree), (Network), and (Laminar) can be formulated as the problem
(IP) with A =1, while A = O(2") for the problem (SC).

For the problem (IP) the following proximity theorem is known:

Theorem 2.4 ([13, Theorem 3.3]).

(1) For every optimal solution y, € Z" to (IP), there exists an optimal solution xz, € R™ to (IP)
such that ||z, — ysl|oo < RA.

(i) For every optimal solution x, € R™ to (IP), there exists an optimal solution y, € Z™ to
(IP) such that ||ys — «||co < NA.

Using this proximity theorem an efficient algorithm for (IP) is devised in [13]. We note that
Granot and Skorin-Kapov [9] discuss the special case of (IP) with a separable quadratic objective
function and obtain a similar proximity result.
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Resource allocation problem under a submodular constraint A continuous relaxation
approach for the problem (SC) is proposed by Hochbaum [11], where the following “proximity
theorem” is stated:

Statement A (Corollary 4.3 in [11])

(i) For every optimal solution y, € Z™ to (SC), there exists some optimal solution z, € R" to
(SC) such that y, — 1 < 7, <y +nl.

(ii) For every optimal solution z, € R" to (SC), there exists some optimal solution v, € Z" to
(SC) such that y, — 1 < z, < yx +nl.

In particular, the claim (ii) in Statement A implies that the vector v = x, + 1 is an upper
bound of some optimal solution to (SC). This observation is used in [12] to devise efficient
algorithms for special cases of (SC) with quadratic objective functions.

Statement A, however, is incorrect; indeed, Example 2.5 below shows that Statement A
does not hold even for the problem (Simple) with a quadratic objective function, which is a
very special case of (SC).

Example 2.5. Let 0 be a sufficiently small positive number with § < 1. We consider the
problem (Simple), where K =n — 1, u(i) = +o0 (i € N), and

fila) = da (e € R),
fila) = (a—0.540)2 (¢ €R, i=2,3,...,n).

It is noted that f;(1) — f;(0) =26 > § for ¢ = 2,3,...,n. Hence, an optimal solution y, € Z"
to the problem (Simple) is uniquely given by y, = (n — 1,0,...,0). On the other hand, for
i =2,3,...,n the slope of the function f; is equal to § if « = (1 — §)/2 and more than § if
a > (1 — §)/2. Therefore, an optimal solution z, € R" to the continuous relaxation (Simple)
is uniquely given by

(=114 1-6 1-6  1-6
Ty = 5 Ty Ty T .

Since 4 is a sufficiently small positive number, we have

s(1) — 2. (1) = (n—1) - "= 1)2(1 +0) _ (n— 1)2(1 )

This implies that if n > 4 then y,(1) —z,(1) > 1 holds, and therefore the inequality y. —1 < z,
does not hold. O

The continuous relaxation approach in [11] is applied to special cases of (SC) with quadratic
objective functions in Hochbaum and Hong [12]. To develop efficient algorithms based on
continuous relaxation, Hochbaum and Hong [12] propose fast algorithms for the problems
(Nest), (Tree), and (Network) with quadratic objective functions.

Theorem 2.6 ([12]).
(1) (Nest) and (Tree) can be solved in O(nlogn) time if objective functions are quadratic.
(ii) (Network) can be solved in O(|V || A|log(|V|?/|A|)) time if the objective function is quadratic.
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Based on these results and Statement A above, efficient algorithms for (Nest), (Tree), and
(Network) with quadratic objective functions are developed [12], and the time complexity of
each algorithm is O(nlogn) for (Nest), O(nlogn) for (Tree), and O(|V||A|log(|V|?/|A])) for
(Network). These algorithms for (Nest), (Tree), and (Network) are, however, no longer valid
since Statement A is incorrect.

Instead of Statement A, we can use the following property which is an immediate corollary
of Theorem 2.4 (ii). Recall that A = 1 holds in Theorem 2.4 for the problems (Nest), (Tree),
and (Network).

Proposition 2.7. Let z, € R™ be an optimal solution to (Nest) ((Tree) and (Network), re-
spectively). Then, there exists an optimal solution y, € Z™ to (Nest) ((Tree) and (Network),
respectively) satisfying v, > . —nl and ||y, — (z. — nl)||; = O(n?).

This property shows that the vector £ = z, —nl can be used as a lower bound of an optimal
solution to (Nest), (Tree), and (Network). Using this fact and a similar technique as in [12] we
can show that (Nest), (Tree), and (Network) can be solved in time O(n?logn), O(n?logn), and
O(n?|A| + |V||Allog(|V|?/|A])), respectively, which are worse than the bounds shown in [12]
by a factor of n.

In this paper, we will prove an alternative proximity theorem for (SC) (Theorem 1.5), and
devise efficient algorithms for (Nest), (Tree), and (Network) based on continuous relaxation
which have better time complexity than those mentioned above.

Remark 2.8. Example 2.5 shows that for an optimal solution z, to the continuous relaxation
(Simple), the vector [z,] cannot be an upper bound of any optimal solution to the the original
problem (Simple). The following example shows that the vector |z, | cannot be a lower bound
of any optimal solution to (Simple).

Example 2.9. Let 0 be an arbitrarily chosen small positive number with § < 1 and put
n =361 —8) —6 =25 — 362 (> 0). We consider the problem (Simple), where K = n — 1,
u(i) = +o0 (i € N), and

fila) =26a (e €R), fi(a):max{—g(a—a),?,a(a—a)} (@€R, i=2,3,...,n).
For 2 = 2,3,...,n, it holds that

fila+2) = fila+1) =36 > 6= f;(1) — fi(0) (Ve € Zy),
fi(1) = fi(0) =6 <26 = fila+1) = fila) (Ve €Z,).

These inequalities imply that the vector y, = (0,1,...,1) is the unique optimal solution to
(Simple). On the other hand, for i = 2,3,...,n, the slope —n/d of the function f; in the
interval [0, 0] is strictly smaller than the slope 20 of the function f;, and the slope 36 of the
function f; in the interval [9, +00) is strictly larger than 26. Hence, an optimal solution z, € R"
to the continuous relaxation (Simple) is uniquely given as z, = ((n — 1)(1 = 6),6,...,6). If
n > 3 then the inequality y. > |z.] does not hold.

On the other hand, the following weaker statement holds for the problem (Simple) [17,
Theorem 2] (see also [14, Section 4.6]):
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For every optimal solution z, € R™ to (Simple), there exists some optimal solution
y« € Z™ to (Simple) satisfying either y, < [z.]| or y« > |z.] (or both).

O

L-convex function minimization Continuous relaxation approach is also applied to L-
convex function minimization. The concept of L-convex function is introduced by Murota [22]
as a class of discrete convex functions on integer lattice points. L-convex functions and M-
convex functions form two distinct classes of discrete convex functions that are conjugate to
each other under the Legendre-Fenchel transformation (see [24] for details).

A function g : Z" — RU{+0o0} is said to be L-convez if it satisfies the following properties:

(LF1[Z]) g is submodular, i.e., g(z)+g(y) > g(zVy)+g(xAy) for all z,y € domg g,
(LF2[Z]) 3r € R such that g(z + 1) = g(z) + r for all z € domzg.

When we discuss the minimization of an L-convex function, we consider the case where the
value r in (LF2[Z]) is zero, since otherwise a minimizer of g does not exist. A typical example
of an L-convex function is a function g : Z™ — R U {400} defined by

g@) = Y gy(z(i) —2(j))  (z€Z"),

LIEN, i£]

where g;; : R = RU{+00} (i,7 € N, i # j) is a family of univariate convex functions.

We consider the minimization of an L-convex function g : Z" — R U {4+00}. To define a
continuous relaxation of L-convex function minimization, we use the concept of closed proper
L-convex function; a closed proper convex function f : R" — RU{+o0} is said to be L-convez
if it satisfies the following properties:

(LF1[R]) f is submodular, i.e., f(z) + f(y) > f(x Vy) + f(z Ay) for all z,y €
domp fa
(LF2[R]) 3r € R such that f(z 4+ A1) = f(z) + Ar for all z € domg f and X € R.

The restriction of a closed proper L-convex function to integer lattice points is an L-convex
function.

Proposition 2.10 ([20]). Let f : R" — R U {400} be a closed proper L-convex function.
For any positive real number «, define a function g : Z" — R U {400} by g(z) = f(az)

(x € Z™). Then, g is an L-convez function on the integer lattice points, i.e., satisfies (LF1[Z])
and (LF2[Z]).

On the other hand, it is known that for every L-convex function g : Z" — R U {400} on
integer lattice points, there exists a closed proper L-convex function f : R" — R U {400}
such that f(z) = g(z) for all x € Z™ [24, 28]. Hence, the minimization of such a closed proper
L-convex function f can be used as a continuous relaxation for the minimization of an L-convex
function g.

The following proximity result is shown for L-convex function minimization.
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Theorem 2.11 ([20]). Let g : Z" — R U {+o0} be an L-convezx function, and f : R" —
R U {400} be a closed proper L-convez function such that f(x) = g(x) for all z € Z™.

(i) For every y. € argming g, there exists some x, € argming f such that ||z, — yulloo < n—1.
(ii) For every x,. € argming f, there exists some y, € arg ming g such that ||y« — T«|loo < n—1.

This theorem is shown by using Proposition 2.10 and the following proximity result concerning
a scaled problem (see [24, Theorem 7.18]).

Theorem 2.12. Let g : Z" — RU {400} be an L-convex function. Let o be a positive integer,
and define go : Z™ — R U {+00} by go(z) = g(az) (z € Z™). Assume that domz g, # 0.

(i) For every y, € argming g, there exists some z, € argming g, such that |az. — ys|loo
(n— 1)~ 1).

(ii) For every x, € argming g,, there exists some y, € argming g such that ||y, — oz«
(n— 1) - 1).

AN

IA

Note that neither (MC) nor (SC) is a special case of L-convex function minimization, and
therefore Theorem 2.11 cannot be applied.

M-convex function minimization Although there is no proximity result concerning the
continuous relaxation of (MC) so far, the following proximity theorem concerning the scaled
problem of (MC) is shown in [18, Theorem 3.4] (see also [24, Theorem 6.37]):

Theorem 2.13. Let g : Z" — RU{+00} be an M-convex function. Let a be a positive integer,
and define go : Z" — R U {+00} by go(z) = g(az) (z € Z"™). Assume that domg g, # 0.
(i) For every y, € argming g, there exists some x, € argming g, such that ||z, — yullco
(n - (e 1).

(ii) For every x, € argming g,, there exists some y, € argming g such that ||y, — oz
(n—1)(a—1).

AN

AN

It seems that a proximity theorem concerning the continuous relaxation of (MC) can be
easily shown by using Theorem 2.13, in a similar way as Theorem 2.11 for L-convex function
minimization. This approach, however, does not work since a statement similar to Proposition
2.10 does not hold for closed proper M-convex functions; it is also noted that g, in Theorem
2.13 above is not necessarily M-convex.

3 Algorithms based on continuous relaxation

In this section we propose a new algorithm for the problem (MC) based on continuous relax-
ation. For this, we firstly propose in Section 3.1 a new greedy-type algorithm for (MC), which
will be used within the continuous relaxation algorithm proposed in Section 3.2. The con-
tinuous relaxation algorithm is then applied to some special cases of (MC) such as (Laminar),
(Nest), (Tree), and (Network) in Sections 3.3 and 3.4, which yields the best time complexity
bounds for these special cases.

Throughout this section, we assume that g : Z" — R U {400} is an M-convex function.
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3.1 New greedy algorithm for M-convex function minimization

We propose a new greedy-type algorithm for the problem (MC). This greedy algorithm will be
used in the algorithm based on continuous relaxation. The algorithm is similar to but runs
faster than the existing greedy algorithms proposed in [18, 35]

The algorithm is based on the following optimality condition of the problem (MC).

Lemma 3.1 ([21, Theorem 2.4], [23, Theorem 2.2]). For a vector y € argming g, it holds that
y € argming g if and only if g(y — x; + x;) > g(y) holds for alli,j € N.

By using a local information of a given vector, we can get a useful information of the area

containing a minimizer of an M-convex function.

Lemma 3.2 ([34, Theorem 2.2]). Suppose that argming g # (. Let y € domz g and h € N.
(i) Suppose that element i € N satisfies the condition

9y +xi — xn) = ming(y + xir — Xn)-
i'eN

Then, there exists some y, € argming g satisfying y«(i) > (y + xi — xn) (@) = y(i) + 1 — xn(4).
(ii) Suppose that element j € N satisfies the condition

9y + xn — x5) = min gy + xn — Xx;j1)-
Jj'eEN

Then, there exists some y, € arg ming g satisfying y.(3) < (v +xn — x;) () = y(3) — 1 + xn(4).

Lemma 3.3. Let y € domzg and h € N.

(i) Suppose that there exists some y, € argming g satisfying y«(h) < y(h) — 1. Then, there
exists 1 € N satisfying i # h and g(y + xi — xn) = mingen g(y + xit — Xn)-

(ii) Suppose that there exists some y, € argming g satisfying y.(h) > y(h) + 1. Then, there
exists j € N satisfying 7 # h and g(y + xn — x;) = mingen g(y + xn — Xxj7)-

Proof. We prove (i) only since (ii) can be shown similarly. It suffices to show that there exists

i € N\ {h} satisfying g(y+xi —xn) < g(y). Since h € supp™ (y —yx), the property (M-EXC|Z])
for g implies that there exists 7 € supp™ (y — ys) such that

g(y) + 9(y«) > gy — xn + xi) + 9(y« + xn — Xi)- (3.3)

Since y. € argming g, we have g(y. + xn — xi) > g(y«), which, together with (3.3), implies
g(y) > g(y — xn + xi). Note that i # h holds. O

Lemma 3.4. Let 1,5 € N, and a, 8 € Z. Suppose that there exist some y',y"” € argming g
satisfying y'(i) > a and y"(j) < B.

(i) If j # i, then there exists some y, € argming g satisfying both of y.(i) > « and y.(j) < B.
(ii) If j =i and a < B, then there exists some y, € argming g satisfying o < y.(i) < f.

Proof. Let y' be a minimizer of g satisfying ¢/'(7) > «a. Let y” be a minimizer of ¢ satisfying
y"(4) < B, and suppose that y” has the maximum value of y”(i) among all minimizers with
y"(j) < B. Assume, to the contrary, that y”(i) < « holds. Since i € supp'(y' — y"), the
property (M-EXCJ[Z]) for g implies that there exists h € supp™ (' — 3”) such that

g )+ 9(") > 9y — xi + xn) + 9" + xi — xn)-
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Since ¢/, y" € arg ming g, this inequality implies that y' —x; +xn, ¥” +x; — Xn € arg ming g. Put
Yo =" +Xi — xn. If j # i, then we have y, € argming g, v.(j) < y"(j) < B, and . (i) > y"(i),
a contradiction to the choice of y”. If j = 4 and a < 3, then we have y, € argmingz g and
y"(i) < y«(i) < a < B, a contradiction to the choice of y”. Hence, y”(i) > « holds for each
case. U

For vectors £ € (ZU{—o0})" and u € (ZU{+00})", we define a function g} : Z" — RU{+o0}

by
u if ¢ <y <wu), n
o) = { gy WISy EW g g, (3.4

+o0o  (otherwise),

M-convexity of a function is preserved under this restriction operation.

Lemma 3.5 ([21, Lemma 2.5]). For vectors ¢ € (Z U {—o00})" and u € (Z U {+o0})", the
function g : Z" — R U {400} defined by (3.4) is M-conver if domzg} = {y € Z" | y €
domzyg, £ <y <u}#0.

We now describe an algorithm for (MC). We assume that an initial vector y° € domg g is
given in advance.

Algorithm NEWGREEDY
Step 0: Set y := y°, and £(k) := —oo and u(k) := +oo for all kK € N.
Step 1: Let h € N be an arbitrarily chosen element with £(h) < u(h).
Step 2: Find 41 € N that minimizes ¢g(y + x;, — x») under the constraint £ < y+ x;, — xn < u.
Step 3: Find i3 € N that minimizes ¢g(y — xi, + x») under the constraint £ < y — x;, + xn < u.
Step 4: If h =41 = i9, then go to Step 5; if h # 41, then go to Step 6;
otherwise (i.e., h # i2), go to Step 7.
Step 5: Set 4(h) := y(h), u(h) := y(h), and go to Step 8.
Step 6: Find j; € N\ {41} that minimizes g(y + xi;;, — Xj,) under the constraint
C<y+xi — x5 <u Set £(i1) :=y(i1) + 1, u(j1) :=y(j1) — 1, and y := y+ X3, — Xj,-
Go to Step 8.
Step 7: Find jo € N \ {i2} that minimizes g(y — xi, + Xj,) under the constraint
£ <y—Xi, +Xj» < u. Set u(iz) :==y(i2) — 1, £(j2) = y(j2) +1, and y := y — Xi, + Xj»-
Go to Step 8.
Step 8: If every element k € N satisfies £(k) = u(k), then output y and stop
(y is a minimizer of g); otherwise, go to Step 1.

We first prove the correctness of the algorithm.
Lemma 3.6. The interval [¢,u] always contains a minimizer of g.

Proof. We prove the statement of the lemma by induction on the number of iterations. It is
obvious that [/, u] contains a minimizer of g at the beginning of the algorithm.

First of all, assume that h = i1 = i3 holds in Step 4. We consider the function g; defined by
(3.4), which is M-convex by Lemma 3.5. By induction hypothesis, it holds that arg ming g; C
argming g. We see from Lemma 3.2 applied to g} that there exist y', 3" € arg ming g} satisfying
y'(h) > y(h) and y"(h) < y(h). Then, Lemma 3.4 (ii) implies that there exists y, € argming g}’
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with y(h) < y«(h) < y(h). Hence, [¢,u] contains a minimizer of g after the update of £(h) and
u(h) in Step 5.

We then consider the case where h # iy holds in Step 4. We see from Lemma 3.2 (i) applied
to g; that there exists y' € argming g satisfying y'(i1) > y(i1) + 1. By Lemma 3.2 (ii) and
Lemma 3.3 (ii), there exists y” € argming g} satisfying y”(j1) < y(j1) — 1. Then, Lemma
3.4 (i) implies that there exists y, € argming gy satisfying both of y.(i1) > y(i1) + 1 and
y«(j1) < y(j1) — 1. Hence, [¢,u] contains a minimizer of g after the update of £(i1) and u(j;)
in Step 6.

The case where h # is holds in Step 4 can be dealt with in a similar way as the previous
case. This concludes the proof. O

We denote by yout the output of the algorithm. The vector yoyt satisfies yout = £ = u, i.e.,
Yout 18 the unique vector in the interval [¢,u] when the algorithm terminates. Hence, yoys is a
minimizer of g by Lemma 3.6.

We then analyze the number of iterations.

Lemma 3.7. If Step 6 or Step 7 is executed, then ||y — yout||1 reduces by two.

Proof. The vector yoyt is always contained in the interval [/, u] since the vector £ (resp., u) is
nondecreasing (resp., nonincreasing) in each iteration. We consider the case where Step 6 is
executed since the case of Step 7 can be dealt with similarly. Let yo1q (resp., ynew) the vector
y before the update (resp., after the update) in Step 6 . We also denote by lpew and upey the
vectors £ and u after the update in Step 6. Then, we have

yout(il) > gnew(il) = yold(il) +1= ynew(il) > yold(il)a
Yout (J1) < Unew (71) = Yo1d(71) — 1 = Ynew (1) < Yora(41)-

Hence, we have Hynew - yout”l = ||y01d - yout”l - 2. U
Lemma 3.8. The algorithm NEWGREEDY terminates in O(n + ||y° — yout||1) iterations.

Proof. Once the equation £(h) = wu(h) is satisfied for some h € N, this equation is always
satisfied in the following iterations since the vector £ (resp., u) is nondecreasing (resp., nonin-
creasing) in each iteration. Hence, Step 5 is executed at most n times. In addition, the value
ly — Yout |1 remains the same after the execution of Step 5. By Lemma 3.7, the value ||y — yout||1
decreases by two whenever Step 6 or 7 is executed. Since the initial value of ||y — yous|1 is
lv° = Yout||1, Steps 6 and 7 are executed ||y° — yous|l1/2 times. Hence, the algorithm NEw-
GREEDY terminates in O(n + ||y° — yous||1) iterations. O

It is easy to see that each iteration of the algorithm can be done in O(nF') time, where
F denotes the time to evaluate the value g(y) of the given M-convex function g and a given
vector y € Z". Hence, we obtain the following result.

Theorem 3.9. The algorithm NEWGREEDY outputs a minimizer of an M-convex function g
in O(nF(n+ ||y° — youtl|1)) time.

20



Note that in the special case of (SC), F represents the time to check whether a given vector
is feasible, plus the time to evaluate the value of the objective function if a given vector is
feasible.

We see from Theorem 3.9 that the running time of the algorithm NEWGREEDY depends
on the distance between the initial vector y° and the minimizer yq,; of the M-convex function
g computed by the algorithm. With a slight modification as in [25], the algorithm always finds
a minimizer of ¢ having the smallest L; distance from y°.

Our idea is to consider a perturbed function

9:(y) = g(y) +elly® -yl (ye€Z")

instead of the original function ¢, where ¢ is a sufficiently small positive number. Note that
elly® — yl|1 is a separable convex function in y, and M-convexity of a function is preserved
by the addition of a separable convex function [24, Theorem 6.13]. Hence, g. is an M-convex
function. Due to the choice of ¢, we have y, € argming g. if and only if y, € argming g and
ly® — yullt = min{|ly® — y||1 | y € argming g}. Hence, it suffices to find a minimizer of g..

Suppose that we apply the algorithm NEWGREEDY to the perturbed function g.. This
amounts to using the following rules in Steps 2, 3, 6, and 7:

(Rule 1) Suppose that we want to find an element 7 that minimizes g(y + x; — xn)
under the constraint £ < y—+x;—xn < u. If there exists such ¢ satisfying y(i) < y°(i),
then we take it; otherwise we take any such element.
(Rule 2) Suppose that we want to find an element 7 that minimizes g(y — x; + xn)
under the constraint £ < y—x;+xn < u. If there exists such ¢ satisfying y (i) > y°(i),
then we take it; otherwise we take any such element.

Theorem 3.10. The algorithm NEWGREEDY with the rules (Rule 1) and (Rule 2) finds a
minimizer y. of an M-convex function g satisfying ||y° —y«||1 = min{||y° —y||1 | y € arg minz g}
in O(nF(n+ min{||y° — y|l1 | y € argming g})) time.

3.2 Algorithm based on continuous relaxation

We propose a new algorithm for (MC) based on continuous relaxation. Assume that we are
given a closed proper M-convex function f : R” — RU {400} such that f(y) = g(y) (Vy € Z"™)
and domg f is the closed convex hull of domgz g. The algorithm is described as follows.

Algorithm CONTINUOUS
Step 1: Compute a minimizer z, € domg f of the closed proper M-convex function f.
Step 2: Compute an integral vector y° € domg g with ||y° — z.||1 < n.
Step 3: Apply the algorithm NEWGREEDY to the M-convex function g,
where we use y° as an initial vector.

We note that domg f is an integral base polyhedron since it is the closed convex hull of
the M-convex set domg g (see Section 2.2). Hence, for any z € dompg f there exists an integral
vector y € domp f NZ" = domgz g satisfying ||y — z|jcc < 1 (see [6, 24]), and such a vector y
satisfies ||y — z«||1 < m. For some special cases of (MC) such as (Laminar) and (Network), we
can compute such an integral vector efficiently, as explained later.
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We see from Corollary 1.4 that there exists some y, € argming g such that |y, — z.||1 <
n(n —1). Hence, the vector y° computed in Step 2 satisfies

lys =4l < llys = 2l + 2 = %11 < n(n—1) +n=n%
This, together with Theorem 3.10, implies that the algorithm NEWGREEDY in Step 3 termi-
nates in O(n?F) time.

We denote by Tielax the time required by Step 1, i.e., the time required for solving the
continuous relaxation (MC), and by Trounq the time required by Step 2. Then, the algorithm
CONTINUOUS finds an optimal solution to (MC) in O(Trelax +Tround +n>F) time. This concludes
the proof of Theorem 1.7.

3.3 Application to laminar convex resource allocation problem

We apply the continuous relaxation algorithm CONTINUOUS proposed in Section 3.2 to the
problem (Laminar). In particular, we consider the case where the objective function is given by
a quadratic function, and prove Theorem 1.9. In the following, it is assumed that we are given
a formulation of (Laminar) as a convex cost flow problem on a tree network (for the convex
cost flow formulation, see Section 2.3). Since we have a tree network representing the laminar
family F, for every X € F we can find all children of X in O(k) time, where k is the number of
children of X; moreover, we can find the parent of X in O(1) time if X # N. We also assume
that for each function fx (X € F) used in the objective function of (Laminar), the function
value can be evaluated in constant time.

We firstly explain how to compute an optimal solution z, € R™ to (Laminar) with a
quadratic objective function. Since this problem is equivalent to a quadratic convex cost
real-valued flow problem on a tree network, it can be solved by the algorithm of Tamir [36] in
O(n?) time. Hence, Step 1 of the algorithm CONTINUOUS can be done in O(n?) time, provided
that the objective function is quadratic.

We next explain how to round an optimal solution z, € R"™ of (Laminar) to a feasible
solution of (Laminar). We here use a network flow technique. Since the coefficient matrix
defining the system of inequalities fy < z(Y) < uy (Y € F) is totally unimodular, there exists
an integral vector y € Z" satisfying

(by <) [2.(V)] <y(YV) < (V)] (Suy) (VY €F) (3.5)

(see, e.g., [1, 33]). Note that the condition (3.5) implies that y is a feasible solution to (Laminar)
with ||y — z.||1 < n since {i} € F for all i € N. An integral vector y € Z" satisfying (3.5) can
be computed in O(n) time, as follows.

For Y € F, let £}, = |z.(Y)]| and v} = [z.(Y)]. To obtain a vector y € Z" satisfying
l, <yY) <uy (VY € F), we compute the value ¢y (Y € F) satisfying the conditions

0 < py <ul (VY € F),
on = K,
px = {oy |Y €F, Yisachildof X} (VX € F, |X|>2)

in a top-down fashion:
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Step 0: Put oy = K.

Step 1: If the value py is computed for all Y € F, then stop, and output the vector y € Z"
defined by y(i) = ¢y (i € N).

Step 2: Let X € F be a set with |X| > 2 such that ¢ is already computed but for some
child Y of X the value ¢y is not computed. Let Y1,Ys,..., Y, € F be all children of
X. Fort=1,2,...,k, we assign the value E’Yt or u’Yt to ¢y, appropriately, so that
Zle vy, = ¢x holds. Go to Step 1.

Step 2 can be done in O(k) time since the values ¢}, u} satisfy the following properties:
uy =0y oruly =0, +1 (VY € F),

k k
Yooy, <ty <ux <Y wh, (VX ETF, |X|>2 ¥1,Ys,...,Y; € F : children of X).
t=1 t=1

Since |F| = O(n), the algorithm described above runs in O(n) time. This shows that Step 2 of
the algorithm CONTINUOUS can be done in O(n) time.

We finally show that Step 3 of the algorithm CONTINUOUS can be done in O(n?) time.
We note that the vector y° € Z™ obtained in Step 2 satisfies ||y° — z.||1 < n, which, together
with the proximity theorem for (Laminar) (Theorem 1.6), implies that there exists an optimal
solution y, € Z™ to (Laminar) such that ||y« — 3°||1 < 3n. Hence, the algorithm NEWGREEDY
used in Step 3 of CONTINUOUS terminates in O(n) iterations by Lemma 3.8. Since |F| =
O(n), the evaluation of the objective function requires O(n) time. Therefore, each iteration of
NEWGREEDY requires O(n?) time if we use a naive implementation. This can be reduced to
O(n) time by using a network flow technique, as follows.

We again use the reformulation of (Laminar) as a convex cost flow problem on a tree network.
We will construct a so-called residual network (or auxiliary network) of the convex cost flow
problem (see, e.g., [1]). Given a feasible solution y € Z™ to (Laminar), we construct a directed
graph Gy = (V, Ay), where V = {vy | Y € F} and the arc set A, is given as

Ay = {(vpyy,oy) [ Y € FA{N}, y(Y) <uy}U{(vy,vpv)) [V € FAN{NG, y(Y) > by}
We then define the length of each arc as follows:

for the arc of the form (v,yy,vy), its length is fy(y(Y) + 1)
for the arc of the form (vy,v,y)), its length is fy(y(Y) — 1)

fy(y(Y));
fr(y(Y)).

We note that {fy (y(Y)+1)— fy(y(Y)} +{fyr(w(Y)—1)— fy(y(Y))} > 0 since fy is a convex
function. This implies that the graph G, does not contain a directed cycle of negative length.

We see that for 7,5 € N, the vector y — x; + X; is a feasible solution to (Laminar) if and
only if there exists a directed path from the node vy;; to the node vy;y. If y — x; +x; is feasible
for some 4,7 € N, then it holds that

fsum(y — Xi + Xj) — fsum(y) = the length of a shortest directed path from vy, to vy,

where fsum(y') = Dy er fr(y/(Y)) for y' € Z". Since the underlying (undirected) graph of G,
is a tree, a shortest path from some node to another node is uniquely determined. For a fixed
© € N, we can compute the length of the shortest directed path from vy to vy for all j € N
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in O(n) time by using a linear-time graph search algorithm. Similarly, for a fixed i € N, we
can also compute the length of the directed simple path from vy;y to vy for all j € N in O(n)
time. This shows that each iteration of the algorithm NEWGREEDY can be done in O(n) time.

Summarizing the discussion above, we can solve the problem (Laminar) in O(n?) time if the
objective function is quadratic. This concludes the proof of Theorem 1.9. Since the problems
(Nest) and (Tree) are special cases of (Laminar), we obtain the following results as a corollary
of Theorem 1.9.

Corollary 3.11. The problems (Nest) and (Tree) can be solved in O(n?) time if the objective
functions are quadratic.

It should be mentioned that by Theorem 2.6 the continuous relaxation problems (Nest)
and (Tree) of (Nest) and (Tree), respectively, can be solved in O(nlogn) time, which is smaller
than the bound O(n?) for (Laminar). This does not affect the running time of the algorithm
CONTINUOUS since Step 3 requires O(n?) time even for (Nest) and (Tree). It is an open question
whether there exist O(nlogn)-time algorithms for (Nest) and (Tree) with quadratic objective
functions.

3.4 Application to network resource allocation problems

We apply the continuous relaxation algorithm CONTINUOUS proposed in Section 3.2 to the
problem (Network), which is a special case of (5C). We consider the case where the objective
function is given by a quadratic function. In the following, we assume that for each function
fi (i € N) used in the objective function of (Network), the function value can be evaluated in
constant time.

We firstly consider Step 1 of the algorithm CONTINUOUS, where the continuous relaxation
problem (Network) is solved. By Theorem 2.6, (Network) can be solved in O(|V || 4| log(|V'|?/|A]))
time if the objective function is quadratic, where V and A denote the node set and the arc set
of the underlying directed graph.

We then explain how to round an optimal solution z, € R" of the continuous relaxation
problem to a feasible solution of the original problem. Let (z, ) € R® x R4 be an optimal
solution to (Network). Since the coefficient matrix defining the system of the constraints in
(Network) is totally unimodular, there exists a pair of integral vectors y € Z™ and ¢ € Z* such
that (y,1)) is a feasible solution to (Network) satisfying

l2.(8)] < (i) < Tz (@] (VieN),  |pu(a)] <9Pla) < Tpu(a)] (Vo€ A) (3.6)

(see, e.g., [1, 33]). Such (y,%) can be computed efficiently by using a max-flow algorithm; for
example, it can be computed in O(|V'||A|log(|V'|?/|A|)) time by the algorithm of Goldberg and
Tarjan [8]. Note that the condition (3.6) implies ||y — z.||1 < m, in particular. Hence, Step 2
of the algorithm CONTINUOUS can be done in O(|V[|A|log(|V'|?/]|A])) time.

We finally show that Step 3 of the algorithm CONTINUOUS can be done in O(n(|V|] + |4]))
time. We note that the vector y° € Z™ obtained in Step 2 satisfies ||y° — z.|l1 < n, which,
together with the proximity theorem for (SC) (Theorem 1.5), implies that there exists an
optimal solution y, € Z™ to (Network) such that ||y« — ¥°||1 < 3n. Hence, the algorithm
NEWGREEDY used in Step 3 of CONTINUOUS terminates in O(n) iterations by Lemma 3.8.
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In the following, we show that each iteration of NEWGREEDY used in Step 3 can be done in
O(|V| + |A]) time by using a network flow technique.

We construct a so-called residual network (or auziliary network) of the convex cost flow
problem (see, e.g., [1]). Given a feasible solution (y,) € Z" x Z* to (Network), we construct
a directed graph Gy = (V, Ay), where

Ay ={(h,k) | (h,k) € A, P(h,k) <c(h,k)} U{(k,h) | (h,k) €A, (h,k) > 0}.

We see that for i,j € N, the vector y — x; + x; is a feasible solution to (Network) if and only
it 0 <y —x;+ xj < u and there exists a directed path from the node 7 to the node j in Gy.
We also note that

fsum (¥ — xi + X5) — fsum(y) = {fi(y() = 1) = fily(@)} +{fi(v() +1) — fi(w(G))},

where foum(y') = D pen fr(y' (k) for ' € Z". For a fixed i € N, we can compute the set of
nodes in G, reachable from the node 7 in O(|V'| 4 |A|) time by using a linear-time graph search
algorithm. Similarly, for a fixed ¢ € N, we can compute the set of nodes in Gy, reachable to the
node 7 in O(|V]+|A|) time. This fact implies that each iteration of the algorithm NEWGREEDY
can be done in O(|V| + |A|) time.

Summarizing the discussion above, we obtain the following result for the problem (Network)
with a quadratic objective function.

Theorem 3.12. The problem (Network) can be solved in O(|V||A|log(|[V'|?/|Al])) time if the

objective function is quadratic.

4 Proofs

We give proofs of proximity theorems; proofs of Theorems 1.3, 1.5, and 1.6 are given in Sections
4.1, 4.2, and 4.3, respectively. Before starting the proofs, we show the tightness of the bounds
in the proximity theorems by using Example 2.9 in Section 2.4. It shows that the bounds in the
proximity theorems are tight, even for the very special case of the simple resource allocation
problem (Simple).

Example 2.9. (continued) The vector y, = (0,1,...,1) is the unique optimal solution to
(Simple), while z, = ((n — 1)(1 — 9),0,...,0d) is the unique optimal solution to the continuous
relaxation (Simple). It holds that

196 = Tl = (R =1)(A =0),  [lys — 2ulls = 2(n — 1)(1 = 9),
which can be arbitrarily close to n — 1 and 2(n — 1), respectively. O

4.1 Proof of Theorem 1.3

We prove Theorem 1.3, a proximity theorem for (MC). To prove this, it is convenient to consider
the problem (GMC) instead of (MC):

(GMC) Minimize f(z) subject to z € domg f NZ",
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where f : R" — RU{+o0} is a closed proper M-convex function in real variables. The problem
(GMC) is more general than (MC) since for every M-convex function g : Z™ — R U {400},
there exists a closed proper M-convex function f : R" — R U {400} in real variables such that
f(x) = g(z) for all x € Z", as stated in Theorem 2.3.

Continuous relaxation of (GMC) can be naturally defined as follows:

(GMC) Minimize  f(z) subject to z € domg f.
We will show a proximity result for the problem (GMC).

Theorem 4.1.

(i) For every optimal solution y. € Z"™ to (GMC), there exists an optimal solution z. € R™ to
(GMC) such that |2+ — Yulloo < n — 1.

(ii) For every optimal solution xz. € R™ to (GMC), there exists an optimal solution y. € Z™ to
(GMCQ) such that ||ys — Zu|loo <mn — 1.

Since the problem (MC) is a special case of (GMC), Theorem 1.3 follows immediately from
Theorem 4.1. It should be mentioned that Theorem 4.1 implies that a closed proper M-convex
function f satisfies argming f # () if and only if arg min{f(y) | y € Z"} # 0 (see Remark 4.4
below). In the following, we prove Theorem 4.1.

4.1.1 Proof of Theorem 4.1 (i)

To prove the statement (i) of Theorem 4.1, we use the following two properties.
The next lemma states that the projection of a closed proper M-convex function f along
an arbitrarily chosen coordinate axis ¢ € N is a supermodular function.

Lemma 4.2 ([29, Proposition 3.12]). For every x,y € R™ and every i € N, we have f(x) +
fly) < f(z)+ f(g), where & and § are given as

. min{z(j),y(j)} (7 € N\ {s}),
() = z(N) — Z min{z(k),y(k)} (j =1),

keN\{:}

| max{z(j),y(j)} (j € N\ {i}),
16 = { g = 3 maxfa(k),y(k)} (= i)-

keN\{:}

For v € R, we define level(f,v) = {z € R" | f(z) < v}. We note that level(f,) is a closed
set since f is a closed convex function (see, e.g., [32, Theorem 7.1]).

Lemma 4.3. Let y, € dompg f, and v € R be a real number such that level(f,v) # (). Suppose
that Z € level(f,7) be a vector minimizing the value |T — y.||1 among all vectors in level(f,~).
(i) If k € N satisfies the condition

fye —xi+xx) > flys) (Vi €N), (4.1)

then it holds that Z(k) — y.«(k) <n — 1.
(ii) If k € N satisfies the condition

flys = xe+x5) 2 flys) (Y EN),
then it holds that (k) — y«(k) > —(n —1).
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Proof. We prove (i) only since (ii) can be shown in a similar way. If (k) < y.(k), then we
have (k) — y«(k) <0 < n — 1. Hence, we may assume that Z(k) > y.(k). We have

f@—e(xe—xi) > f(&) (Vi €supp™ (Z—y.), 0 < Ve <min(Z(k) -y (k), y. (i) —2(2))) (4.2)

since otherwise there exists a vector 2’ € domp f satisfying f(z') < f(2) <y and ||z’ — |1 <
|Z — y«ll1, a contradiction to the choice of Z. Let supp (z — y«) = {i1,%2,...,4}, where
t = [supp (Z — y«)| (£ n—1). Put yp = y,, and iteratively define A\;, € Ry and y; € R" for
each h =1,2,...,t by
A= sup{A | yp—1 + A(xk — Xi,) € domg f,
A < min(Z (k) — ya—1(k), yn—1(in) — 2(in)),
f(yn—1+ XN (xx — xi,)) is strictly decreasing in X' € [0, \]}

and y, = yn—1+An(xx —Xi,). Note that the definition of Ay, allows for A, = 0. By the definition
of y;, and closed convexity of f, we have

fyn) < fyn-1) if A, >0, (4.3)
flyn +Xxk — xi,)) > flyn) (YA >0) if Z(k) > yp(k) and yu(in) > 2(i5). (4.4)

Claim 1: ! | A, = &(k) — yo(k).

[Proof of Claim 1]  Assume, to the contrary, that 31 _ Xy < #(k) — yo(k). Since k €
supp™ (Z — ), (M-EXC[R]) implies that there exist i, € supp (£ —y;) and a sufficiently small
A > 0 such that

F@) 4+ flye) > F(@ = XMxw — xa,)) + (e + Ak — Xin))-

By Lemma 4.2 with 7 = k, we obtain

flyn +Moxw — xin)) + Fe) < flye + XMxwe — xin)) + f(yn)-

Combining the two inequalities, we have

Fyn +AMxe —xi,)) — flyn) < f(2) = F(Z = Axx — xi,)) <0,

where the last inequality is by (4.2) since ij, € supp™ (Z — y;) C supp (Z — ys). This, however,
contradicts (4.4). [End of the proof of Claim 1]

Claim 2: For h=1,2,...,¢, if A, > 0 then f(y. + M(xe — Xi,,)) < f(ys)-
[Proof of Claim 2] Let h be any integer in {1,2,...,¢t} with A\;, > 0. By Lemma 4.2 with
1 = k, we have
Fe 4+ MOk = Xin)) + f (n—1) < fyn) + (1),
which implies
e+ Anlxe — xa,)) — f(ye) < fyn) = fyn—1) <0,
where the last inequality is by (4.3). [End of the proof of Claim 2]

By the inequality (4.1) and convexity of f, we have
fys + Bk —xa)) =2 flye) (VB 21, VieN).
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Therefore, it follows from Claim 2 that A\, < 1 for all h = 1,2,...,¢, which, together with
Claim 1, implies the desired inequality as follows:

t
B(k) — yu(k) = @(k) —yo(k) =D I <t <n—1.
h=1

O

We are now ready to prove the statement (i) of Theorem 4.1. Let y. be a minimizer of
(GMC), i.e., y, satisfies f(y,) = min{f(y) | y € Z"}. Then, we have the following inequalities
for every k € N:

f(ys = Xi + X&)

flys) (Vi€ N), (4.5)
flye —xk +x5) > f 4.6

>
> flys) (Vi €N).

Assume that argming f # 0, and let v = min{f(z) | = € R"}. Then, level(f,vy) =
arg ming f holds. Let £ € R™ be a vector in level(f,~), and assume that Z minimizes the value
|Z—y«||1 among all vectors in level(f,~). Lemma 4.3 (i) and (4.5) imply that z(k)—y. (k) < n—1
for every k € N. Similarly, Lemma 4.3 (ii) and (4.6) imply that Z(k) — y.(k) > —(n — 1) for
every k € N. This shows that Z € level(f,v) = argming [ satisfies ||Z — y«l|co < n — 1.

It remains to prove that arg ming f # 0. For this, we show the following property:

Vv € R with level(f,v) # 0, 3z € level(f,v) such that ||z — y«|lec <n — 1. (4.7)

Let £ € domg f be a vector in level(f,~), and assume that £ minimizes the value ||Z — |1
among all vectors in level(f,v). Lemma 4.3 (i) and (4.5) imply that Z(k) — y.(k) < n — 1 for
every k € N. Similarly, Lemma 4.3 (ii) and (4.6) imply that Z(k) — y.(k) > —(n — 1) for every
k € N. This shows that (4.7) holds.

The property (4.7) implies that

inf{f(r) | = € dom £, &~ yulloo <m—1} = nf{f(z) |z € dom },
argmin{f(z) | z € domp f, ||z — ysl]loo <n —1} C argming f.

We have argmin{f(z) | z € domg f | ||z — y«|lco <n—1} # 0 since f is a closed proper convex

function and the set {z € domgr f | ||z — Y«|loc < n — 1} is bounded and closed. Hence, it holds
that arg ming f # 0.

4.1.2 Proof of Theorem 4.1 (ii)

To prove the statement (ii) of Theorem 4.1, we use the statement (i) shown in Section 4.1.1.
Let z, € R™ be an optimal solution to (GMC). Let y. € Z™ be an optimal solution to (GMC)
minimizing the value ||z, —y.||1 among all optimal solutions to (GMC). Using a positive number
0, we define a new problem:

(GMC?) Minimize  f(y) + 0|ly — z«||1 subject to y € Z".
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The function 0|y — z.||; is a separable convex function in y, and therefore f(y)+ 0|y — z.||1 is a
closed proper M-convex function in y since the addition of a separable convex function preserves
M-convexity [24, Theorem 6.49]. It is easy to see that z, is the unique optimal solution to the
continuous relaxation of (GMC?). In addition, if § is a sufficiently small positive number, then
Y. is an optimal solution to (GMC’). Hence, by applying Theorem 4.1 (i) to (GMC?) and its
continuous relaxation, we obtain ||z, — ys|loo < n — 1.

Remark 4.4. Theorem 4.1 implies that a closed proper M-convex function f satisfies arg ming f #
() if and only if argmin{f(y) | y € Z™} # 0 holds. In the general case where f is not neces-
sarily M-convex, however, the properties arg ming f # () and argmin{f(y) | y € Z"} # 0 are
independent of each other, as shown in the following two examples.

Let f: R? = R U {+oc} be a closed proper convex function defined by

279 — 1)2
Fan, ) = (274—1) (if 71 > 0 and 0 < 2 < 1),
+o0 (otherwise).

We have arg ming f = {(21,0.5) | z1 € R, 21 > 0} # 0. On the other hand, f(y) > 0 for all
integral vectors y € Z" and inf{f(y) | y € Z*} = inf{1/(y1 + 1) | y1 € Z+} = 0. This shows
that argmin{f(y) | y € Z?} = 0 holds.

We then consider a closed proper convex function ¢ : R? = R U {400} defined by

1/(zy +1) (ifz; >0and 29 = V2 21),
+o0 (otherwise).

g(z1,12) = {

Then, argmin{g(y) | y € Z*} = {(0,0)} since (0,0) is the unique integral vector with finite
function value of g. On the other hand, g(x) > 0 for all z € R? and infg = inf{1/(z1 + 1) |
x1 > 0} = 0. This shows that arg ming ¢ = () holds. O

Remark 4.5. For any closed proper M-convex function f : R” — R U {400} and a > 0, we
define a function f, : R — R U {+o00} by fo(z) = f(az) (x € R™). Then, f, is a closed
proper M-convex function as well [24, Theorem 6.49 (2)]. Theorem 4.1 applied to f, can be
restated in terms of f as follows, which are seemingly more general but equivalent. O

Corollary 4.6. Let f : R" — R U {+o0} be a closed proper M-convex function. For a > 0,
we define foz : Z" — R U {+00} by

+o00  (otherwise),

fnle) = { flaz) (x €2,

(i) For every y, € argming fnz, there exists some x, € argming f such that ||z, — ay.l|co <

a(n —1).
(ii) For every z, € argming f, there exists some y, € argming foz such that ||ay, — Ti||eo <
aln —1).

(iii) We have argming f # 0 if and only if arg ming foz # 0.
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4.2 Proof of Theorem 1.5

We prove Theorem 1.5, a proximity theorem for (SC). It is known that the set of feasible
solutions of (SC) is represented as the M-convex set B(py) N Z"™ with a submodular function
py: 2N — ZU {400} given by p, (V) =min{p(Z) | Z D Y} (Y C N) (see [6, Section 3.1 (b)]).
Hence, the problem (SC) is rewritten as follows:

Minimize >, fi(z()) subject to z € B(p4) NZ™.

Based on the observation above, we consider the problem of minimizing a separable convex
function on an M-convex set, which is (slightly) more general than (SC):

(GSQ) Minimize Y1, fi(z()) subject to z € B(p) N2Z",

where f; : R — R (i € N) is a family of univariate convex functions, and p: 2V — Z U {400}
is an integer-valued submodular function satisfying p(@) = 0 and p(N) < +oo. Continuous
relaxation of (GSC) can be naturally defined as follows:

(GSC) Minimize Y1, fi(z()) subject to  z € B(p).
We will show a proximity result for the problem (GSC).

Theorem 4.7.

(i) For every optimal solution y, € Z™ to (GSC), there exists an optimal solution z, € R™ to
(GSC) such that ||z+ — y«|l1 < 2(n —1).

(ii) For every optimal solution z, € R™ to (GSC), there exists an optimal solution y. € Z" to
(GSC) such that ||y — z4||1 < 2(n —1).

Then, Theorem 1.5 is an immediate consequence of this.
In the following, we prove Theorem 4.7, where we use the following properties concerning
the problem (GSC). For z € R™ we denote

frum(@) = 3 Filw(i)).

1EN

Lemma 4.8. Let ¢ : R — R be a univariate convez function. For a, € R with a < 8 and
e € R with 0 <e < B —a, it holds that p(a) + o(B) > p(a+¢e) + o(B — ).

Lemma 4.9 (cf. [29]). For z,y € R™, i € suppt (z —y), and j € supp™ (z — y), it holds that
fsum(m) + fsum(y) > fsum(m - a(Xi - Xj)) + fsum(y + a(Xi - Xj))
for every a € R with 0 < o < min{z (i) — y(2),y(j) — z(J)}

Proof. The inequality follows from Lemma 4.8. U
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4.2.1 Proof of Theorem 4.7 (i)

Let y. € B(p) NZ" be an optimal solution to (GSC). Let z, € B(p) be an optimal solution to
(GSC) minimizing the value ||z, — y«||1 among all optimal solutions to (GSC). In the following,
we show by induction on the cardinality of the set supp(z. —y«) = {i € N | z.(i) # y.(¢)} that

e = yalli < 2(lsupp(zs —ya)[ = 1) if 2. # yu. (4.8)

This implies the statement (i) since |[supp(z. — y«)| < n. We note that if z, # y, then
|supp(z« — y«)| > 2 since z.(N) = y.(N).
Assume that z, # y.. Put

L={ieN||a.() - ()| > 1}.
We consider the following three cases.

Case 1: supp™ (z+ —y+) N L = (),
Case 2: supp™ (x4 — ys) N L # 0 and supp™ (24 — yx) \ L = 0,
Case 3: supp™ (z+ — ys) \ L # 0.

(Case 1) By assumption, we have

22(7) =) <1 (V7 € supp™ (2« — y))- (4.9)

Since z.(N) = y.(N) = p(N), we have

> {laa (i) = ()] | i € supp™ (2 — )} =D _{l(§) — 92 (G)| | j € supp ™ (2 —y)}. (4.10)

We also have

supp™ (2 — y)| = [supp(zs — y.)| — [supp™ (z — y.)| < |supp(zs — y.)| — 1. (4.11)

Therefore, it holds that

2 —yeli = 2 > |7(i) —9e()] < 2supp (w2 —ya)| < 2(|supp(ze — )| — 1),
JESUPP ™ (Tx —Yx)
where the equality is by (4.10) and the first and the second inequality are by (4.9) and by
(4.11), respectively. Hence, (4.8) holds.
(Case 2) Let j € supp (z« — y«) N L. Since j € supp™ (y« — ), Theorem 2.1 (i) implies
that there exist some i € supp™ (y« — xx) and a sufficiently small ¢ > 0 such that

Y« —e(x; —xi) € B(p), @« +elxs — xi) € B(p). (4.12)

Since y, € B(p) NZ" and p is an integer-valued function, the property y. —e(x; — xi) € B(p)
implies y. — (x; — xi) € B(p) NZ". In the following, we derive a contradiction by showing that

fsurn(y* - (Xj - XZ)) < fsum(y*)-
Note that i € supp (y« — z«) = supp' (2« — y«) C L holds by the assumption of Case 2.

Since [|(z« +e(x; — Xi)) — Y/l < [z« = ysl1, we have
foum (@4 +(xj — x3)) > foum () (4.13)
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by the choice of z,. It follows from the convexity of fs,m and the inequality (4.13) that

fsum(l'* + (Xj - Xz)) > fsum($*)- (4.14)

By Lemma 4.9, it holds that

fsum(y*) + fsum(m*) > fsum(y* - (Xj - Xt)) + fsum(x* + (Xj - XZ)) (4'15)

since ¥, (j) > 2.(j) + 1 and y. (i) < z.(i) — 1. Tt follows from (4.14) and (4.15) that fsum(ys —
(xj — xi)) < fsum(y«), a contradiction to the optimality of y, to (GSC). This means that Case
2 does not occur.

(Case 3) By assumption, there exists some k € supp™ (zs — ys) \ L. Let

B={zeR" |z e B(p), x(i) = y«(i) (Vi € N\ supp(z+ —y.)), z(k) < y.(k)}.

Then, the set B is an integral base polyhedron and B N Z" is an M-convex set (see, e.g., [6,
Section 3.1 (b)]). Note that y, € B and z, ¢ B. We consider the problem (GSC’) and its
continuous relaxation (GSC'):

(GSC) Minimize >, fi(z(4)) subject to = € BNZ",
(GSC') Minimize .7, fi(z(i)) subject to z € B.

Then, y, is an optimal solution to (GSC') since y, € B and B C B(p). This, together with
Theorem 1.3, implies that there exists an optimal solution to (GSC’). Let S (C B) be the set
of optimal solutions to (GSC’), and S, be the set of optimal solutions = to (GSC’) minimizing
the value ||z — y.l|1, i-e.,

Se={z €S|z -yl < [l —y.l1 (Va’ € S)}.
As shown later, there exists some € S, satisfying the following conditions:

z(k) = y«(k), (4.16)
suppt (z. — &) = {k}. (4.17)

Since z.(N) = Z(N) = p(N), it holds that
Y {zcl)=F()] | j € supp (@ =8} = > {|2.(i)=2(0)| | i € supp™ (v, —)} = |z (k) —E(k)],
where the last equality is by (4.17). This equation and (4.16) imply
e = Zll1 = 2|z (k) — 2(F)| = 2|z.(k) — y(F)] <2, (4.18)
where the last inequality follows from k ¢ L. If & = y,, then the inequality (4.18) implies
e = yullt = [l2x — 211 < 2 < 2(|supp(@s — ya)| = 1),

i.e., (4.8) holds. Hence, we assume & # y,. Since & € B, we have supp(Z — y«) C supp(z« — y«),
which, together with (4.16), implies supp(z — y.) C supp(z« — y«) \ {k}. Hence, we can apply
the induction hypothesis to the problem (GSC’) and vectors Z, y. to obtain the inequality

12 = yellt < 2(Jsupp(Z — y.)| — 1). (4.19)
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The inequality (4.8) follows from (4.18) and (4.19) as follows:

e =gall < Ml = 2l + 117 = galla
< 24 2(J]supp(Z —y)| = 1) < 2(|supp (s —y.)| — 1)

It remains to show that there exists some Z € S, satisfying (4.16) and (4.17).

Let Z € S, be a vector maximizing the value Z(k) among all vectors in S,, and assume, to
the contrary, that Z(k) < y.(k). Since z.(k) > y.(k), we have k € supp™ (x4 — Z). Therefore,
Theorem 2.1 (i) and Lemma 4.9 imply that there exist some j € supp ™ (2, —2) and a sufficiently
small positive number € such that z, — e(xx — x;) € B(p), T+ e(xx — x;j) € B(p), and

fsum(m*) + fsum(j) > fsum(x* - 5(Xk - Xj)) + fsum(j + 5(Xk - Xj))' (4'20)

Since 1z, is an optimal solution to (GSC), it holds that

fsum(l'*) < fsum($* - 5(Xk - Xj))- (4'21)

Since Z(k) < y.(k) and ¢ is sufficiently small, we have & + ¢(x; — x;) € B. This implies

fsum (%) < foum(Z + (xk — X;5)) (4.22)

since # is an optimal solution to (GSC'). It follows from (4.20), (4.21), and (4.22) that the
inequality (4.22) holds with equality, implying that Z 4+ e(xx — X;) is also an optimal solution
to (GSC’). Since (k) < (k) + € < y«(k), we have ||(Z + e(xx — X;)) — Y«ll1 < |# — yull1. This
implies  + e(xx — xj) € S« since & € S,. This, however, is a contradiction since & maximizes
the value Z(k) among all vectors in S.. Hence, 7 satisfies (4.16).

Let  be a vector in S, satisfying (4.16), and assume that # minimizes the value

> max{z,(i) - (i),0}
1eEN
among all such vectors. We will show that the vector Z chosen in this way satisfies (4.17).
Assume, to the contrary, that supp™(z. — Z) \ {k} # 0, and let h € supp™(z. — %) \ {k}.
Then, Theorem 2.1 (i) and Lemma 4.9 imply that there exist some j € supp™(z, — Z) and a
sufficiently small positive number e such that z, — e(x) — x;j) € B(p),  +e(xn — x;) € B(p),
and

fsum(m*) + fsum(j) > fsum(x* - 6(Xh - Xj)) + fsum(j + 5(Xh - Xj))- (4'23)
Since z, is an optimal solution to (GSC), we have

fsum(m*) < fsum(m* - 5(Xh - Xj))' (4'24)

Since Z is an optimal solution to (GSC') and z + e(xn — x;) € B, we have

fsum(i‘) < fsum(i' + 6(Xh - Xj))- (4'25)

It follows from (4.23), (4.24), and (4.25) that the inequalities (4.24) and (4.25) hold with
equality. This implies that 2}, = z, — (x5 — X;) is an optimal solution to (GSC), and &' =
# 4 e(xn — X;) is an optimal solution to (GSC’). We have z.(h) < y.(h) or z.(5)

otherwise ||z}, — y.|l1 < ||+« — y«||1 holds, contradicting the choice of ..
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Obviously, #'(k) = #(k) = y«(k) holds. In the following, we show that #’ is a vector in S,
satisfying

> max{z, (i) — #(i),0} <> max{x.(i) — £(i),0}, (4.26)

tEN 1EN

which is a contradiction to the choice of Z.
It holds that

|2 (1) =y (i) = 12() — 9. (D) (Vi € N\ {h,j}),
I <12(0) —yu(D)| +e (Vi € {h,j}).

If z,.(h) < y«(h) holds, then we have z(h) < Z(h) + ¢ = Z'(h) < z«(h) < y.«(h), implying
Z'(h) = y(B)| = [E(h) — yx(R)] —e. If 2.(j) > y.(j), then we have Z(j) > i(j) —¢ =
(7)) > z.(4) > y«(4), implying |Z'(j) — y«(J)] = |Z(j) — y«(J)] — €. Hence, it holds that

12" — y«lli < |2 — y«ll1, i-e., Z' € S,. Finally, the inequality (4.26) can be obtained as follows:

Z max{z, (i) — 7'(i),0} — Z max{z, (i) — z(¢),0}

1EN 1EN
= [max{z.(h) — Z'(h),0} — max{z.(h) — Z(h),0}]
+ [max{z.(j) — #'(4), 0} — max{z.(j) — £(j), 0}]
= {z.(h) —z(h) —e} — {zs(h) —2(h)} = —e < 0,

where the second equality follows from h € supp™(z, — %), j € supp™ (z« — %), and the fact
that ¢ is a sufficiently small positive number.
Hence, I satisfies (4.16) and (4.17). This concludes the proof of Theorem 4.7 (i).

4.2.2 Proof of Theorem 4.7 (ii)

To prove the statement (ii) of Theorem 4.7, we use the statement (i) which is already shown
in Section 4.2.1. Let z, € B(p) be an optimal solution to (GSC). Let y, € B(p) N Z" be
an optimal solution to (GSC) minimizing the value ||z, — y.||1 among all optimal solutions to
(GSC). With a positive number § we define a new problem:

(GSC?) Minimize 7" {fi(z(i)) + 0|z (i) — z.(i)|} subject to = € B(p) NZ".

This problem is also the minimization of a separable convex function on an M-convex set. It
is easy to see that z, is the unique optimal solution to the continuous relaxation of (GSC?). In
addition, if ¢ is a sufficiently small positive number, then y, is an optimal solution to (GSC?).
Hence, by applying Theorem 4.7 (i) to the problem (GSC?) and its continuous relaxation, we
obtain ||z, — y«|[1 < 2(n —1).

4.3 Proof of Theorem 1.6
4.3.1 A key lemma

To prove Theorem 1.6, a proximity theorem for (Laminar), we first show a useful lemma. Let
F C 2" be a laminar family satisfying the condition (2.2). Recall the definitions of the parent
and a child of X € F in Section 2.3. For distinct elements 7,5 € N, a minimal set in F
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containing both of 7,7 is uniquely determined, and we call it the lowest common ancestor of 1
and j. For every distinct 4,5 € N, a (directed) path from i to j (in F) is defined as a sequence
S0, 51, -+,S¢ (t > 2) of sets in F satisfying the following conditions:

(i) So = {i}, S = {5,
(ii) there exists some k with 1 < k < ¢ — 1 such that Sy is the lowest common
ancestor of 7 and 7,

(iii) for h =0,1,...,k — 1, the set Sj11 is the parent of Sj,

(iv) for h=k+ 1,k +2,...,t, the set S,_; is the parent of Sj.

Note that a path from ¢ to 7 is uniquely determined.
Let z € R", and 7,5 € N be distinct elements. We define the capacity cap(i, j, F, z) with
respect to 1,7, F, and z by

cap(i, j, F,z) = min Ogglngi}clilmax(z(Sh),0),k+r1n§i21§tmax(—z(8h),0) ,
where Sg, S1,...,5; is the path from 7 to j and Si is the lowest common ancestor of ¢ and j.
Note that cap(i, j, F, z) > 0 if and only if

2(Sp) >0 (h=0,1,...,k—1), 2(Sp) <0 (h=k+1,k+2,...,1).
We now give the statement of the key lemma.

Lemma 4.10. Let F C 2V be a laminar family satisfying the condition (2.2). Let z € R™ be a
vector with z(N) = 0, and suppose that cap(i,j, F,z) < 1 for every distinct elements i,j € N.
Then, ||z|l1 < 2(n — 1) holds; the strict inequality ||z||1 < 2(n — 1) holds if n > 2.

Proof. We show the statement of the lemma by induction on the cardinality n of the ground
set N. If n = 1, then we have z(1) = z(N) = 0, implying ||z||; = 0 = 2(n — 1). Hence, we
consider the case with n > 2.

Claim 1: For every i € supp™(z), there exists some j € supp~(z) such that cap(s, j, F,z) > 0.

[Proof of Claim 1] Let X C N be the unique minimal set in F satisfying z(X) < 0 and
i € X. Such X always exists since z(N) = 0 and N € F. Note that |X| > 2 since z(i) > 0.
Let Sy, S1,...,Sr (K > 1) be the sequence of sets such that Sy = {i}, Sy = X, and S}, is the
parent of S,y (h =1,2,...,k). Then, we have z(Sy) >0 (h =0,1,...,k — 1) by the choice
of X. Since z(S;) = 2(X) < 0 and z(Sk—1) > 0, there exists another child Siy; of X such
that z(Sg+1) < 0. If |Ski1| > 2, then there exists some child Skyo € F of Ski1 such that
2(Sk12) < 0. Repeating this, we can obtain a sequence of sets Sk, Sgi1,...,St—1,S; such that
IS¢ =1, 2(Sh) <0 (h=k+1,k+2,...,t),and Sy isachildof S, 1 (h=k+ 1,k+2,...,¢t).
Let 5 € N be the unique element in S;. Then, the observation above implies that j € supp™ (2)
and cap(i, j, F,z) > 0. [End of the proof of Claim 1]

We may assume that z # 0, and let 4, € supp*(z). By Claim 1, there exists some j, €
supp~(z) such that cap(iy, ji, F,z) > 0. Let Sy, S1,...,S; be the path from i, to j,, and S},
(1 <k <t—1) be the lowest common ancestor of i, and j,.

Define Z = z —0(xi, — xj.) with § = cap(is, j«, F, z) (> 0). Then, we have ||Z||; = ||| — 2.
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Claim 2: For every distinct 4,5 € N, it holds that cap(i,j, F, 2) < cap(i,j,F,2) (< 1).

[Proof of Claim 2] It suffices to show that for every X € F, we have 0 < 2(X) < z(X)
if 2(X) > 0and 0 > 2(X) > 2(X) if 2(X) < 0. We see from the definition of a path that
S, ..., Sk_1 are those sets in F which contain i, and not j,. Therefore, for X € {5’0, . ,S'k_l},
we have z(X) > 4, and therefore Z(X) = z(X) — d > 0. Similarly, each set X € {Sgy1,...,5;}
contains j, and not i,, and therefore we have z(X) < —¢§ and Z(X) = 2(X) + 0 < 0. Finally,
each X € F not in {S’o, el S’k,l} U {§k+1, el S't} contains both of i, and j,, or neither of i,
and j,, implying that z2(X) = z(X). [End of the proof of Claim 2]

By the definition of § = cap(is, j«, F, z), there exists some v € {0,...,k—1}U{k+1,...,t}
such that |2(S,)| = 6. This implies #(S,) = 0. Let N' = S, and N” = N\ S,. Since
1S, N {iy, 7.} =1, we have 1 < |N'| < n and 1 < [N”| < n. We define new families 7' C 2"V’
and F" C 2N as follows:

F {Y|YeF vcCs,},
F' = [Y|YeF, YnS,=0u{Y\S,|YeF, Y>S}.

Then, 7' and F" are laminar families satisfying the condition (2.2). We also define vectors
Z € RV and 2" € RN by #/(i) = (i) (i € N') and 2" (i) = 2(i) (i € N"). The following claim
can be shown easily from the observation that for every i,j € N’ (resp., 7,5 € N") with i # 7,
the path in F' (resp., in F") from i to j corresponds to the path in F from i to j.

Claim 3: For every distinct 4,5 € N’, it holds that cap(, j, F', 2’) = cap(i, j, F, Z). For every
distinct 7,5 € N”, it holds that cap(i,j, F",2") = cap(i, j, F, 2).

Claims 2 and 3 imply that cap(i, 7, F', 2’) < 1 for every distinct 7,7 € N’ and cap(i, 7, F",2") <
1 for every distinct 4,7 € N”. Hence, we can apply the induction hypothesis to obtain
12'1h <2(|N'| — 1) and [|2"||; < 2(|N"| —1). Since § < 1, we have

lzlli = 26+ |2l =26 + [|2'[ls + 12" |
< 242(N'I=1)+2(|N"| = 1) =2(|N'| +|N"| - 1) =2(n — 1).

4.3.2 Proof of Theorem 1.6 (i)

Recall that n > 2 in the problem (Laminar). Let y, € Z™ be an optimal solution to (Laminar),
and z, € R" be an optimal solution to (Laminar) which minimizes the value ||z, — y.||; among
all optimal solutions to (Laminar). We may assume z, # y. since otherwise the statement (i)
holds immediately. Put z = z, — y,. Then, it holds that z(N) = z,(N) —y.(N) = K — K = 0.
We will show that for every distinct 7,5 € N we have cap(i,j, F,z) < 1. Then, the inequality
|z« — ysll1 < 2(n — 1) follows from Lemma 4.10.

Let So, S1,53,...,S; be the path from i to j, and Sy (1 < k <t¢—1) be the lowest common
ancestor of 7 and j. Assume, to the contrary, that cap(s, j, F, z) > 1. Then, we have z(Sp,) > 1
for h=0,1,...,k—1and 2(Sy) < —1forh=k+1,k+2,...,t.
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We define vectors z' = z, — x; + x; and ¥’ = y. + xi; — x;. Then, we have

ux > 2.(X) > 2(X) = 2,(X) 1 2 (X) 2 bx (VX € {Sor.... Ser)).
Ix <yu(X) <y (X) =pu(X) +1 < 3(X) <ux (VX €{S0,..., k1)),
Ix <z(X) <2 (X) = 2.(X) + 1 < yu(X) <ux (VX € {Ski1,---,5t}),
wx > (X)) >y (X) = gu(X) = 1> 0,(X) > £y (VX € {Sprnr- s S},
(X)) = 2.(X), ¥(X) =y(X) (VX EF, XZ{S0,---,Sk1} U{Sks1,---,5})-

Hence, y' and z' are feasible solutions to (Laminar) and (Laminar), respectively. The inequalities
above and Lemma 4.8 imply

fx(@(X)) + fx (y(X)) > fx(a'(X)) + fx( (X)) (VX € F),

from which follows

S fx(@dX) + D0 fxwe(X) > D fx@ (X)) + > fx((X)). (4.27)

XeF XeF XeF XeF

Since ||z" — y|| < |« — yxll1, we have > v » fx (24(X)) <D ver fx(2'(X)), which, together
with (4.27), implies D v 7 fx (4«(X)) > > xcr fx(¥'(X)), a contradiction to the optimality
of y, to (Laminar).

4.3.3 Proof of Theorem 1.6 (ii)

Let z, € R™ be an optimal solution to (Laminar), and y, € Z" be an optimal solution to
(Laminar) which minimizes the value ||z, — y.||1 among all optimal solutions to (Laminar). We
assume , # ¥y, and put z = z,—y,. Then, we can show in a similar way as in Section 4.3.2 that
cap(i,j, F,z) < 1 for every distinct 7, j € N, where we use the fact that ) ¢ r fx(y:(X)) <
Y xer fx(¥'(X)) holds for every 3 € Z™ with ||z, — /|| < ||z« — y«|l1. Hence, the inequality
Iz|Ilh = ||z« — y«ll1 < 2(n — 1) follows from Lemma 4.10.
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