
A Fast Algorithm for Computing

a Nearly Equitable Edge Coloring

with Balanced Conditions

Akiyoshi SHIOURA∗ Mutsunori YAGIURA†

January 27, 2009

Abstract

We discuss the nearly equitable edge coloring problem on a multigraph and propose an

efficient algorithm for solving the problem, which has a better time complexity than the

previous algorithms. The coloring computed by our algorithm satisfies additional balanced

conditions on the number of edges used in each color class, where conditions are imposed

on the balance among all edges in the multigraph as well as the balance among parallel

edges between each vertex pair. None of the previous algorithms are guaranteed to satisfy

these balanced conditions simultaneously. To achieve these improvements, we propose a

new recoloring procedure, which is based on a set of edge-disjoint alternating walks, while

the existing algorithms are based on an Eulerian circuit or a single alternating walk. This

new recoloring procedure makes it possible to reduce the time complexity of the algorithm.

1 Introduction

1.1 Problem Definition and Main Results

We discuss the nearly equitable edge coloring problem on a multigraph. Let G = (V,E)

be a multigraph; a multigraph is an undirected graph which may have parallel edges and/or

loops. Throughout this paper, we denote by n and m the numbers of vertices and edges in G,

respectively. Let C = {1, 2, . . . , k} be a set of k colors. An edge coloring of a multigraph G is

an assignment of k colors to edges in E, which is represented by a function π : E → C.

Let π : E → C be an edge coloring. For each vertex v ∈ V and a color i ∈ C, we denote by

dπ(v, i) the number of edges in E incident to v with color i. We say that an edge coloring π of

a multigraph G is nearly equitable if it satisfies the condition

(NEC) |dπ(v, i) − dπ(v, j)| ≤ 2 (∀v ∈ V,∀i, j ∈ C).

The main aim of this paper is to propose a new algorithm for computing a nearly equitable

edge coloring of a given multigraph. The time complexity of the proposed algorithm is better

than the previous algorithms.
∗Graduate School of Information Sciences, Tohoku University, Sendai 980-8579, Japan,

shioura@dais.is.tohoku.ac.jp.
†Graduate School of Information Sciences, Nagoya University, Nagoya 464-8603, Japan,

yagiura@nagoya-u.jp.

1

Table 1: Comparison of algorithms for the nearly equitable edge coloring problem. The mark

“
√

” means that the output of the algorithm satisfies the conditions (B1) and/or (B2).

authors time complexity (B1) (B2) technique used

Hilton & de Werra (1982) [5] O(km2)
√

single alternating walk

Nakano et al. (1995) [9] O(m2/k + mn) single alternating walk

Xie et al. (2004) [16] O(m2/k)
√

Eulerian circuit

Xie et al. (2008) [17] O(mn log(m/(nk) + 1))
√

Eulerian circuit

Ours O(min{mn, m2/k}) √ √
edge-disjoint alternating walks

In addition to the condition (NEC), we consider the following two “balanced” conditions

on the number of edges used in each color class:

(B1) ||Ei
π| − |Ej

π|| ≤ 1 (∀i, j ∈ C),

(B2) ||Ei
π(u, v)| − |Ej

π(u, v)|| ≤ 1 (∀i, j ∈ C,∀u, v ∈ V),

where π is an edge coloring and

Ei
π = {e ∈ E | π(e) = i} (i ∈ C),

Ei
π(u, v) = {e ∈ E | π(e) = i, e connects u and v} (i ∈ C, u, v ∈ V).

The first condition (B1) imposes that the number of all edges in each color class is almost

the same, while the second condition (B2) imposes that each color class uses almost the same

number of parallel edges between each pair of vertices. Note that the conditions (B1) and (B2)

are equivalent to the following (B1′) and (B2′), respectively:

(B1′) |Ei
π| ∈ {bm/kc, dm/ke} (∀i ∈ C),

(B2′) |Ei
π(u, v)| ∈ {bm(u, v)/kc, dm(u, v)/ke} (∀i ∈ C,∀u, v ∈ V),

where m(u, v) (u, v ∈ V) denotes the number of parallel edges connecting u and v. We show

that the nearly equitable edge coloring computed by our algorithm satisfies both of the balanced

conditions. Our main result is summarized as follows:

Theorem 1.1. Our algorithm computes a nearly equitable edge coloring of a multigraph satis-

fying the conditions (B1) and (B2) in O(min{mn,m2/k}) time.

Table 1 shows a summary of the previous algorithms for the nearly equitable edge color-

ing problem. The time complexity of our algorithm is better than the previous best bound

O(mn log(m/(nk) + 1)) by Xie et al. [17].1 Moreover, our algorithm is the first to compute

a nearly equitable edge coloring satisfying both of the conditions (B1) and (B2). The algo-

rithms in [16, 17] outputs a nearly equitable edge coloring satisfying (B1), and the output of

the algorithm in [5] satisfies (B2), but none of the previous algorithms is guaranteed to obtain

a coloring satisfying both of (B1) and (B2) (see Table 1).

1It is pointed out in Xie et al. [17] that mn log(m/(nk) + 1) = Θ(m2/k) holds for any m, n and k satisfying

0 < m/nk ≤ 1. From this fact it is not difficult to show that the algorithm in [17] is never asymptotically slower

than that of [16], and that our new algorithm is never asymptotically slower than that of [17].

2

To compute a nearly equitable edge coloring, our algorithm iteratively modifies an edge

coloring. For this, we propose a new recoloring procedure, which is based on a set of edge-

disjoint alternating walks, while the previous algorithms are based on an Eulerian circuit [16, 17]

or a single alternating walk [5, 9] (see Table 1). This recoloring procedure makes it possible to

reduce the time complexity of the algorithm while keeping the conditions (B1) and (B2) of an

edge coloring.

In the following discussion, we assume k ≤ m without loss of generality, since otherwise the

problem is trivial.

1.2 Previous and Related Work

An edge coloring π of a multigraph G is said to be equitable if it satisfies the condition

(EC) |dπ(v, i) − dπ(v, j)| ≤ 1 (∀i, j ∈ C,∀v ∈ V),

which is stronger than the condition (NEC). Although every bipartite multigraph has an eq-

uitable edge coloring, non-bipartite multigraphs may not have an equitable edge coloring (see,

e.g., [6, 12, 13]). A typical example is an odd cycle, which has no equitable edge coloring with

k = 2. Several sufficient conditions for multigraphs to have an equitable edge coloring are

shown in [5, 6, 11, 14]. Note that the problem of determining the existence of an equitable

edge coloring is NP-complete (see [17]).

The balanced conditions (B1) and (B2) have often been discussed in the literature of (nearly)

equitable edge coloring [2, 5, 6, 13, 15, 16, 17]. The first condition (B1) is referred to as

“equalized condition” in [2] and “balanced condition” in [10, 16, 17], and the second condition

(B2) is referred to as “edge-balanced condition” in [5].

Recently, a weighted version of the equitable edge coloring problem is discussed in [1, 3],

and the following conjecture for bipartite multigraphs is raised in [1]:

given a multigraph G = (V,E), a set of colors C = {1, 2, . . . , k}, and weights wi

(i ∈ C) with 0 < wi < 1 and
∑

i∈C wi = 1, there exists an edge coloring such that

bwid(v)c ≤ dπ(v, i) ≤ dwid(v)e (∀i ∈ C, ∀v ∈ V). (1.1)

Note that the condition (1.1) coincides with the condition (EC) if wi = 1/k for all i ∈ C. The

conjecture holds for some special cases, but does not hold in general, especially when G is

not bipartite. The following relaxed statement where both of the upper and lower bounds are

relaxed by two is proven for bipartite multigraphs in [1] and for general multigraphs in [3].

Theorem 1.2 ([1, 3]). Given a multigraph G = (V,E), a set of colors C = {1, 2, . . . , k}, and

weights wi (i ∈ C) with 0 < wi < 1 and
∑

i∈C wi = 1, there exists an edge coloring such that

bwid(v)c − 2 ≤ dπ(v, i) ≤ dwid(v)e + 2 (∀i ∈ C, ∀v ∈ V).

1.3 Overview of Our Algorithm

Our algorithm starts with an initial edge coloring satisfying (B1) and (B2), and repeatedly

improves the edge coloring, without violating (B1) and (B2), so that it satisfies the condition

(NEC) in the end. As in many previous papers in the area of edge coloring, our algorithm

3

improves an edge coloring by switching edge colors of alternating walks (see, e.g., [4, 7]); the

difference from the previous approach is that our algorithm uses a set of edge-disjoint alternat-

ing walks, not a single alternating walk, in each iteration. If a set of edge-disjoint alternating

walks is chosen in a naive way, we can only show that the algorithm terminates in O(m) iter-

ations. To reduce the number of iterations, a set of edge-disjoint alternating walks is chosen

in a deliberate way, which leads to the bound O(min{kn,m}) on the number of iterations. We

show that each iteration can be done in O(m/k) time, and therefore the time complexity of

the proposed algorithm is O((m/k) × min{kn,m}) = O(min{mn,m2/k}).

2 Switch of Edge Colors

The proposed algorithm modifies an edge coloring by using an operation called switch. For

every distinct colors α, β ∈ C, we denote by Gπ(α, β) the subgraph of G given by Gπ(α, β) =

(V,Eα
π ∪Eβ

π). Given an edge set S ⊆ Eα
π ∪Eβ

π , switching edge colors of S means to interchange

the colors α and β of edges in S; more formally, switching edge colors of S is to modify the

current edge coloring π : E → C to the new edge coloring π ′ : E → C given by

π′(e) =







β (e ∈ S, π(e) = α),

α (e ∈ S, π(e) = β),

π(e) (e ∈ E \ S).

To switch edge colors, the algorithm uses an edge set S ⊆ Eα
π ∪Eβ

π satisfying the following

condition:
{

if dπ(v, α) ≥ dπ(v, β), then 0 ≤ dS
π(v, α) − dS

π(v, β) ≤ dπ(v, α) − dπ(v, β),

if dπ(v, α) ≤ dπ(v, β), then 0 ≥ dS
π(v, α) − dS

π(v, β) ≥ dπ(v, α) − dπ(v, β),

}

(2.1)

where for each v ∈ V and i ∈ {α, β}, we denote by dS
π(v, i) the number of edges in S incident to

v with color i. We say that S is eligible in the multigraph Gπ(α, β) if it satisfies the condition

(2.1) for all v ∈ V . Eligible edge sets are useful in getting a better edge coloring, as shown

below.

Proposition 2.1. Let a, b, c ∈ R be any real numbers such that a ≥ b and 0 ≤ c ≤ a−b. Then,

we have min{a, b} ≤ min{a − c, b + c} ≤ max{a − c, b + c} ≤ max{a, b}.

Lemma 2.2. Let π : E → C be an edge coloring and S ⊆ Eα
π ∪ Eβ

π an eligible edge set. Then,

the new edge coloring π′ : E → C obtained by switching edge colors of S satisfies

min{dπ(v, α), dπ(v, β)} ≤ min{dπ′(v, α), dπ′ (v, β)}
≤ max{dπ′(v, α), dπ′ (v, β)} ≤ max{dπ(v, α), dπ(v, β)} (∀v ∈ V).

Proof. The claim follows from (2.1), Proposition 2.1, and the following equations for each

v ∈ V :

dπ′(v, α) = dπ(v, α) − {dS
π (v, α) − dS

π(v, β)} dπ′(v, β) = dπ(v, β) + {dS
π (v, α) − dS

π(v, β)}.

To keep the balanced conditions (B1) and (B2), we consider the following two conditions

for an edge set S ⊆ Eα
π ∪ Eβ

π :

4

(S1) if |Eα
π | = |Eβ

π | + 1, then |S ∩ Eα
π | − |S ∩ Eβ

π | = 0 or +1,

if |Eα
π | = |Eβ

π |, then |S ∩ Eα
π | − |S ∩ Eβ

π | = 0,

if |Eα
π | = |Eβ

π | − 1, then |S ∩ Eα
π | − |S ∩ Eβ

π | = 0 or −1,

(S2) for every u, v ∈ V ,

if |Eα
π (u, v)| = |Eβ

π (u, v)| + 1, then |S ∩ Eα
π (u, v)| − |S ∩ Eβ

π (u, v)| = 0 or +1,

if |Eα
π (u, v)| = |Eβ

π (u, v)|, then |S ∩ Eα
π (u, v)| − |S ∩ Eβ

π (u, v)| = 0,

if |Eα
π (u, v)| = |Eβ

π (u, v)| − 1, then |S ∩ Eα
π (u, v)| − |S ∩ Eβ

π (u, v)| = 0 or −1.

Lemma 2.3. Let π : E → C be an edge coloring, and π ′ : E → C be the new edge coloring

obtained by switching edge colors of an edge set S ⊆ Eα
π ∪ Eβ

π .

(i) If π and S satisfy (B1) and (S1), respectively, then π ′ satisfies (B1).

(ii) If π and S satisfy (B2) and (S2), respectively, then π ′ satisfies (B2).

The following is one of the key properties used in our algorithm. The proof will be given

in Section 5.

Lemma 2.4. Let π : E → C be an edge coloring. Suppose that there exist two distinct colors

α, β ∈ C and a vertex u ∈ V such that dπ(u, α) − dπ(u, β) ≥ 3 holds. For any integer r ∈ Z

such that 1 ≤ r ≤ dπ(u, α) − dπ(u, β) − 2, we can compute an eligible edge set S ⊆ Eα
π ∪ Eβ

π

satisfying the conditions (S1), (S2), and dS
π(u, α)− dS

π(u, β) ∈ {r, r + 1} in O(|Eα
π ∪Eβ

π |) time.

3 Proposed Algorithm

We explain our algorithm for computing a nearly equitable edge coloring satisfying the condi-

tions (B1) and (B2).

Our algorithm starts with an initial edge coloring satisfying (B1) and (B2), which can be

easily computed in O(m) time by using the following property.

Proposition 3.1. Let {e1, e2, . . . , em} be an ordered list of the edges in E such that the parallel

edges connecting the same pair of vertices are ordered consecutively, and color each edge et

(t = 1, 2, . . . ,m) by the color (t mod k) + 1. Then, the resulting edge coloring satisfies the

conditions (B1) and (B2).

Proof. The condition (B1) is easy to see. The condition (B2) is satisfied since the parallel edges

connecting the same pair of vertices are ordered consecutively.

The algorithm always keeps the two conditions (B1) and (B2) satisfied, and iteratively improves

the edge coloring so that the condition (NEC) is satisfied in the end.

To obtain an edge coloring π satisfying the condition (NEC), our algorithm processes each

vertex u ∈ V one by one. If the vertex u violates the condition

|dπ(u, i) − dπ(u, j)| ≤ 2 (∀i, j ∈ C), (3.1)

then the algorithm repeatedly updates the edge coloring π by switching edge colors of an eligible

edge set S until the condition (3.1) is satisfied. By Lemma 2.2, once the vertex u satisfies the

condition (3.1), the edge coloring always satisfies (3.1) in the following iterations.

5

Suppose that the vertex u violates the condition (3.1). Our algorithm implicitly maintains

the following sets of colors:

C0
π(u) = {i ∈ C | dd(u)/ke − 1 ≤ dπ(u, i) ≤ bd(u)/kc + 1}, (3.2)

C+
π (u) = {i ∈ C | dπ(u, i) ≥ bd(u)/kc + 2}, (3.3)

C−
π (u) = {i ∈ C | dπ(u, i) ≤ dd(u)/ke − 2}. (3.4)

Note that {C0
π(u), C+

π (u), C−
π (u)} is a partition of C. Whenever both of C+

π (u) and C−
π (u) are

nonempty, the algorithm chooses two distinct colors α, β with α ∈ C+
π (u) and β ∈ C−

π (u), which

is done by choosing α and β satisfying dπ(u, α) = maxi∈C dπ(u, i) and dπ(u, β) = mini∈C dπ(u, i).

Then, the algorithm updates the edge coloring π so that at least one of α and β is contained

in C0
π(u). This can be done efficiently by Lemma 2.4 with the value r given by

r = min{dπ(u, α) − (bd(u)/kc + 1), (dd(u)/ke − 1) − dπ(u, β)}. (3.5)

Repeating these steps, we obtain either C+
π (u) = ∅ or C−

π (u) = ∅ (or both). Suppose that

C−
π (u) = ∅ holds. Note that in this case, the right-hand side of (3.5) is zero. Then, the algorithm

iteratively updates the edge coloring π so that the value
∑{dπ(u, i) − dd(u)/ke | i ∈ C+

π (u)}
decreases at least by one while keeping the condition C−

π (u) = ∅. This is done by choosing two

colors α and β with the same rule as above, and then using Lemma 2.4 with r = 1. In this

way, the algorithm computes an edge coloring π satisfying (3.1).

Our algorithm is described as follows.

Algorithm FastBalancing(G, C)

Input: a multigraph G = (V,E) and a set of colors C = {1, 2, . . . , k}.
Output: a nearly equitable edge coloring π : E → C of G satisfying (B1) and (B2).

1. Compute an initial edge coloring π satisfying the conditions (B1) and (B2).

2. for each u ∈ V do

3. Compute the value dπ(u, i) for all i ∈ C.

4. while ∃i, j ∈ C such that |dπ(u, i) − dπ(u, j)| ≥ 3 do

5. Compute colors α, β ∈ C such that dπ(u, α) = maxi∈C dπ(u, i), dπ(u, β) = mini∈C dπ(u, i).

6. Compute an eligible edge set S ⊆ Eα
π ∪ Eβ

π satisfying (S1), (S2), and

dS
π(u, α) − dS

π(u, β) ∈ {r, r + 1}, where r is given by

r = max{1,min{dπ(u, α) − (bd(u)/kc + 1), (dd(u)/ke − 1) − dπ(u, β)}}.
7. Modify the edge coloring π by switching edge colors of S.

8. Output π and stop.

We note that an eligible edge set S in Line 6 can always be obtained by Lemma 2.4. It

is easy to see that the condition (NEC) is satisfied when the algorithm terminates. Since the

edge set S chosen in Line 6 satisfies the conditions (S1) and (S2), the edge coloring π always

satisfies (B1) and (B2) by Lemma 2.3. Hence, the output of the algorithm is a nearly equitable

edge coloring satisfying (B1) and (B2).

4 Analysis of Time Complexity

We analyze the time complexity of the algorithm FastBalancing. First of all, we analyze

the number of iterations of Lines 5–7 for a fixed vertex u ∈ V , where we use a convex function

6

ϕz : R → R defined by

ϕz(x) = max{bzc − x, 0, x − dze} (x ∈ R),

where z ∈ R is a real number.

Proposition 4.1. Let z ∈ R be any real number, and a, b, c ∈ Z any integers such that

a > z > b and 1 ≤ c ≤ a − b − 1. Then, we have ϕz(a − c) + ϕz(b + c) ≤ ϕz(a) + ϕz(b) − 1.

Proof. The proof is given in Appendix.

For an edge coloring π : E → C and a vertex u ∈ V , we define

Φ(π, u) =
∑

i∈C

ϕd(u)/k(dπ(u, i)).

The value Φ(π, u) is a nonnegative integer for every edge coloring π, and Φ(π, u) = 0 holds if

and only if bd(u)/kc ≤ dπ(u, i) ≤ dd(u)/ke for all i ∈ C. Thus, the value Φ(π, u) represents the

degree of unbalance in the edge coloring π at the vertex u.

Lemma 4.2. Let π be an edge coloring, u ∈ V be a vertex, and α, β ∈ C be distinct colors such

that

dπ(u, α) = max
i∈C

dπ(u, i), dπ(u, β) = min
i∈C

dπ(u, i), dπ(u, α) − dπ(u, β) ≥ 3.

Suppose that π′ is an edge coloring obtained by switching edge colors of an eligible edge set

S ⊆ Eα
π ∪ Eβ

π with

1 ≤ dS
π(u, α) − dS

π(u, β) ≤ dπ(u, α) − dπ(u, β) − 1. (4.1)

Then, we have Φ(π′, u) ≤ Φ(π, u) − 1.

Proof. It suffices to show that

ϕd(u)/k(dπ′(u, α)) + ϕd(u)/k(dπ′(u, β)) ≤ ϕd(u)/k(dπ(u, α)) + ϕd(u)/k(dπ(u, β)) − 1.

Since (1/k)
∑

i∈C dπ(u, i) = d(u)/k and dπ(u, α) = maxi∈C dπ(u, i) > mini∈C dπ(u, i) = dπ(u, β),

we have dπ(u, α) > d(u)/k > dπ(u, β). In addition, dπ′(u, α) = dπ(u, α) − c and dπ′(u, β) =

dπ(u, β) + c hold with c = dS
π(u, α) − dS

π(u, β). Hence, Proposition 4.1 implies that

ϕd(u)/k(dπ′(u, α)) + ϕd(u)/k(dπ′(u, β)) = ϕd(u)/k(dπ(u, α) − c) + ϕd(u)/k(dπ(u, β) + c)

≤ ϕd(u)/k(dπ(u, α)) + ϕd(u)/k(dπ(u, β)) − 1.

Lemma 4.3. For a fixed vertex u ∈ V , the number of iterations in the while loop in the

algorithm FastBalancing is O(d(u)).

Proof. The eligible set S computed in Line 6 satisfies the condition (4.1). Hence, the claim

follows from Lemma 4.2 and the fact that Φ(π, u) = O(d(u)).

Lemma 4.4. For a fixed vertex u ∈ V , the number of iterations in the while loop in the

algorithm FastBalancing is O(k).

7

Proof. In each iteration of the while loop, we consider the sets C0
π(u), C+

π (u), C−
π (u) defined by

(3.2), (3.3), and (3.4), respectively. Suppose that the colors α and β chosen in Line 5 satisfy

α ∈ C+
π (u), β ∈ C−

π (u). Recall that α and β are such that dπ(u, α) = maxi∈C dπ(u, i) and

dπ(u, β) = mini∈C dπ(u, i). Let S be an edge set chosen in Line 6. Since the value r in Line 6

satisfies

r = min{dπ(u, α) − (bd(u)/kc + 1), (dd(u)/ke − 1) − dπ(u, β)} ≥ 1,

at least one of α and β is contained in C0
π(u) after switching edge colors of S. This fact implies

that in at most k iterations, we have either C+
π (u) = ∅ or C−

π (u) = ∅.
Assume, without loss of generality, that C−

π (u) = ∅. Then, we have

d(u)

k
− dπ(u, i) ≤

⌈d(u)

k

⌉

− dπ(u, i) ≤ 1 (∀i ∈ C). (4.2)

Since
∑

i∈C{dπ(u, i) − d(u)/k} = d(u) − d(u) = 0, it holds that

∑

{

dπ(u, i)− d(u)

k

∣

∣

∣
i ∈ C, dπ(u, i) >

d(u)

k

}

=
∑

{d(u)

k
−dπ(u, i)

∣

∣

∣
i ∈ C, dπ(u, i) ≤ d(u)

k

}

.

Hence, we have

Φ(π, u) ≤
∑

i∈C

max
{

dπ(u, i) − d(u)

k
,
d(u)

k
− dπ(u, i)

}

= 2
∑

{d(u)

k
− dπ(u, i)

∣

∣

∣
i ∈ C, dπ(u, i) ≤ d(u)

k

}

≤ 2k,

where the last inequality is by (4.2). This fact, together with Lemma 4.2, implies that the

while loop terminates in at most 2k iterations. This concludes the proof.

By Lemmas 4.3 and 4.4, the number of iterations of Lines 5–7 for a fixed vertex u ∈ V

is O(min{k, d(u)}). We can compute an eligible edge set S satisfying the desired conditions

in O(|Eα
π ∪ Eβ

π |) = O(m/k) time by Lemma 2.4. Switching edge colors in Line 7 requires

O(|S|) = O(m/k) time. Maintenance of values dπ(u, i) and Line 5 can be done in O(m) time in

total by using a data structure shown in [17, Section 3]. Hence, the algorithm FastBalancing

computes a nearly equitable edge coloring of a multigraph satisfying the conditions (B1) and

(B2) in O((m/k) × ∑

u∈V min{k, d(u)}) = O(min{mn,m2/k}) time. This concludes the proof

of Theorem 1.1.

5 Computing Eligible Edge Sets

In this section we give a proof of Lemma 2.4, which states that an eligible edge set S ⊆ Eα
π ∪Eβ

π

satisfying the conditions (S1), (S2), and an additional condition on the number dS
π(v, α) −

dS
π(v, β) can be found in O(|Eα

π ∪Eβ
π |) time. To prove this, we consider a decomposition of the

edge set Eα
π ∪ Eβ

π by using eligible alternating walks to be defined below.

A walk is a sequence of vertices and edges of the form u0e1u1e2u2 . . . et−1ut−1etut, where

u0, u1, . . . , ut are vertices and e1, e2, . . . , et are distinct edges such that ej connects the vertices

uj−1 and uj for j = 1, 2, . . . , t. It should be mentioned that a walk may visit the same vertex

more than once; in particular, it is possible that the first and last vertices u0 and ut are the

same. A walk is said to be eligible if the set of all edges in the walk is eligible. In the following

discussion, we may regard a walk as the set of edges {e1, e2, . . . , et} to simplify the description.

8

Let π : E → C be an edge coloring, and α, β ∈ C distinct colors. We call a walk P in the

multigraph Gπ(α, β) an alternating walk if any two consecutive edges in P have different colors.

Alternating walks in Gπ(α, β) can be categorized into the following three types. An αβ-even

alternating walk is an alternating walk P such that |P ∩Eα
π | = |P ∩Eβ

π |. An α-odd alternating

walk (resp., a β-odd alternating walk) is an alternating walk P such that |P ∩Eα
π | = |P ∩Eβ

π |+1

(resp., |P ∩Eβ
π | = |P ∩Eα

π |+1). In the following, we mainly consider eligible alternating walks

in Gπ(α, β).

Lemma 5.1 ([7, 8, 9]). Let u0 ∈ V be a vertex such that dπ(u0, α) 6= dπ(u0, β). Then, there

exists an eligible alternating walk P = u0e1u1e2u2 . . . et−1ut−1etut starting from u0.

A partition {P1, P2, . . . , Ps, R} (s ≥ 0) of the edge set Eα
π ∪Eβ

π of the multigraph Gπ(α, β)

is called an alternating walk decomposition if Ph (h = 1, 2, . . . , s) are eligible alternating walks

satisfying the following condition:

s
∑

h=1

{dPh

π (v, α) − dPh

π (v, β)} = dπ(v, α) − dπ(v, β) (∀v ∈ V). (5.1)

Note that an alternating walk decomposition is not uniquely determined. An alternating walk

decomposition always exists, and can be obtained by the following algorithm.

Step 0: Set s := 0 and E ′ := Eα
π ∪ Eβ

π .

Step 1: If dE′

π (v, α) = dE′

π (v, β) (∀v ∈ V), then output {P1, P2, . . . , Ps, E
′} and stop.

Step 2: Let v ∈ V be a vertex with dE′

π (v, α) 6= dE′

π (v, β).

Step 3: Find an eligible alternating walk Ps+1 in the multigraph (V,E ′) starting from v.

Step 4: Set E ′ := E′ \ Ps+1 and s := s + 1. Go to Step 1.

It is not difficult to implement this algorithm so that it runs in O(|Eα
π ∪ Eβ

π |) time.

We now prove Lemma 2.4. Suppose that there exist two distinct colors α, β ∈ C and a

vertex u ∈ V such that dπ(u, α) − dπ(u, β) ≥ 3. Let {P1, P2, . . . , Ps, R} be an alternating

walk decomposition of Eα
π ∪ Eβ

π . In the following, we show that there exists a subset P ⊆
{P1, P2, . . . , Ps} of alternating walks such that the set S =

⋃

P∈P P satisfies the conditions

(S1), (S2), and

dS
π(u, α) − dS

π(u, β) ∈ {r, r + 1}, (5.2)

where r is an integer with 1 ≤ r ≤ dπ(u, α) − dπ(u, β) − 2. We note that for any P ⊆
{P1, P2, . . . , Ps}, the set S =

⋃

P∈P P is eligible since {P1, P2, . . . , Ps, R} is an alternating walk

decomposition. The proof given below is constructive, and it immediately yields an algorithm

for computing an eligible edge set satisfying the desired conditions in O(|Eα
π ∪ Eβ

π |) time.

We first consider the condition (5.2). We assume that P1, . . . , Ps′ (s′ ≥ 0) are the alternating

walks such that both of the end vertices are u, and Ps′+1, . . . , Ps′′ (s′′ ≥ s′) are the alternating

walks such that only one of the end vertices is u. We start with P = ∅, and add the walks

P1, P2, . . . , Pmin{s′,dr/2e} to the set P. If s′ ≥ dr/2e, then the edge set S =
⋃

P∈P P satisfies

dS
π(u, α) − dS

π(u, β) = 2dr/2e ∈ {r, r + 1};

i.e., (5.2) holds. Otherwise (i.e., s′ < dr/2e), we further add the walks Ps′+1, Ps′+2, . . . , Ps′+(r−2s′)

to P. Then, S =
⋃

P∈P P satisfies (5.2). We note that s′ + (r − 2s′) ≤ s′′ holds since

2s′ + (s′′ − s′) = dπ(u, α) − dπ(u, β) > r.

9

We then consider the property (S1). We note that none of walks in the current set P is a

β-odd alternating walk since every eligible alternating walk starting from the vertex u is either

an αβ-even alternating walk or an α-odd alternating walk. Let tα be the number of α-odd

alternating walks in P, and define tβ by

tβ =

{

max{0, tα − 1} if |Eα
π | = |Eβ

π | + 1,

tα if |Eα
π | = |Eβ

π | − 1 or |Eα
π | = |Eβ

π |.

We see from the following simple observation that the number of β-odd alternating walks in

{P1, P2, . . . , Ps} is at least tβ.

Lemma 5.2. Let {P1, P2, . . . , Ps, R} be an alternating walk decomposition of Eα
π ∪ Eβ

π , and

let sα (resp., sβ) be the number of α-odd (resp., β-odd) alternating walks in {P1, P2, . . . , Ps}.
Then, we have sα − sβ = |Eα

π | − |Eβ
π |.

We choose tβ β-odd alternating walks in the decomposition arbitrarily and add them to P.

Note that u cannot be an end vertex of a β-odd alternating walk, and hence the addition of β-

odd alternating walks does not affect the condition (5.2). Therefore, the edge set S =
⋃

P∈P P

satisfies both of (5.2) and (S1).

Finally, we consider the condition (S2). We use a similar technique as in [5, 7, 8]. Let

G∗
π(α, β) be a subgraph of Gπ(α, β) defined as follows. From the multigraph Gπ(α, β), delete

successively all pairs of edges of color α and β respectively connecting the same two vertices

as far as such a pair of edges exists, and let G∗
π(α, β) = (V,E∗) be the resulting multigraph.

Obviously, for each pair of vertices v, v ′ there exists at most one edge connecting v and v ′; an

edge (v, v′) with color α (resp., β) is in E∗ if and only if |Eα
π (v, v′)| = |Eβ

π (v, v′)| + 1 (resp.,

|Eβ
π (v, v′)| = |Eα

π (v, v′)|+1). Hence, any subset S of E∗ satisfies the condition (S2). This means

that if we consider an edge set of the graph G∗
π(α, β) instead of the original graph Gπ(α, β), the

condition (S2) is automatically satisfied. This modification does not affect (S1) since G∗
π(α, β)

is obtained by removing the same number of edges from Eα
π and from Eβ

π . Moreover, we have

dE∗

π (v, α) − dE∗

π (v, β) = dπ(v, α) − dπ(v, β) (∀v ∈ V).

This implies that the conditions concerning the balance around each vertex such as eligibility

condition (2.1) and the conditions (5.1) and (5.2) are not affected by the replacement of Gπ(α, β)

with G∗
π(α, β). In summary, this replacement of the multigraph does not affect the properties

shown in the previous discussion. This concludes the proof of Lemma 2.4.

6 Conclusion

In this paper, we proposed a new algorithm for the nearly equitable edge coloring problem.

Our algorithm FastBalancing computes a nearly equitable edge coloring of a multigraph

satisfying the conditions (B1) and (B2) in O(min{mn,m2/k}) time. The time complexity of

our algorithm is better than those of the previous algorithms. Moreover, our algorithm is the

first to compute a nearly equitable edge coloring satisfying both of the conditions (B1) and

(B2).

10

References

[1] J. Correa and M. X. Goemans, Improved bounds on nonblocking 3-stage Clos networks,

SIAM Journal on Computing 37 (2007) 870–894.

[2] J. K. Dugdale and A. J. W. Hilton, Amalgamated factorizations of complete graphs,

Combinatorics, Probability, and Computing 3 (1994) 215–231.

[3] U. Feige and M. Singh, Edge coloring and decompositions of weighted graphs, Proceedings

of ESA 2008, Lecture Notes in Computer Science 5193, 405–416.

[4] M. K. Goldberg, Edge-coloring of multigraphs: recoloring techniques, Journal of Graph

Theory 8 (1984) 122–136.

[5] A.J.W. Hilton and D. de Werra, Sufficient conditions for balanced and for equitable edge-

colouring of graphs, O. R. Working paper 82/3, Département de Mathématiques, École

Polytechnique Fédérate de Lausanne, Switzerland, 1982.

[6] A.J.W. Hilton and D. de Werra, A sufficient condition for equitable edge-colourings of

simple graphs, Discrete Mathematics 128 (1994) 179–201.

[7] S. Nakano and T. Nishizeki, Scheduling file transfers under port and channel constraints,

International Journal of Foundations of Computer Science 4 (1993) 101–115..

[8] S. Nakano, T. Nishizeki, and N. Saito, On the fg-coloring of graphs, Combinatorica 10

(1990) 67–80.

[9] S. Nakano, Y. Suzuki, and T. Nishizeki, An algorithm for the nearly equitable edge-coloring

of graphs (in Japanese), IEICE Transactions on Information and Systems J78-D-I (1995)

437–444.

[10] T. Ono, T. Hirata, An improved algorithm for the net assignment problem, IEICE Trans-

actions on Fundamentals E84-A (2001) 1161–1165.

[11] H. Song, J. Wu, and G. Liu, The equitable edge-coloring of series-parallel graphs, Pro-

ceedings of ICCS 2007, Part III, Lecture Notes in Computer Science 4489, 457–460.

[12] D. de Werra, Equitable colorations of graphs, Revue française d’Informatique et de

Recherche Operationelle R-3 (1971) 3–8.

[13] D. de Werra, Some results in chromatic scheduling, Zeitschrift für Operations Research 18

(1974) 167–175.

[14] D. de Werra, An extension of bipartite multigraphs, Discrete Mathematics 14 (1976) 133–

138.

[15] D. de Werra, On the use of alternating chains and hypergraphs in edge coloring, J. Graph

Theory 3 (1979) 175–182.

[16] X. Xie, T. Ono, S. Nakano, and T. Hirata, An improved algorithm for the nearly equitable

edge-coloring problem, IEICE Transactions on Fundamentals E87-A (2004) 1029–1033.

11

[17] X. Xie, M. Yagiura, T. Ono, T. Hirata, and U. Zwick, An efficient algorithm for the nearly

equitable edge coloring problem, Journal of Graph Algorithms and Applications 12 (2008)

383–399.

Appendix: Proof of Proposition 4.1

Define a′, b′ ∈ Z by

(a′, b′) =

{

(a − c, b + c) if a − c ≥ b + c,

(b + c, a − c) if a − c < b + c.

Then, it suffices to show that {ϕz(a)+ϕz(b)}−{ϕz(a
′)+ϕz(b

′)} ≥ 1. Note that that a > a′ ≥
b′ > b and a − a′ = b′ − b ≥ 1. If a′ ≥ z ≥ b′, then we have

{ϕz(a) + ϕz(b)} − {ϕz(a
′) + ϕz(b

′)}
= {(a − dze) + (bzc − b)} − {(a′ − dze) + (bzc − b′)} = (a − b) − (a′ − b′) ≥ 2.

If a > z > a′, then we have

{ϕz(a) + ϕz(b)} − {ϕz(a
′) + ϕz(b

′)}
= {(a − dze) + (bzc − b)} − {(bzc − a′) + (bzc − b′)} = 2a − dze − bzc ≥ 1,

where the inequality is by a > z ≥ bzc. The case with b′ > z > b can be shown in the same

way as the case with a > z > a′.

12

