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Abstract

Murota (1995) introduced an M-convex function as a quantitative generalization of the
set of integral vectors in an integral base polyhedron as well as an extension of valuated
matroid over base polyhedron. Just as a base polyhedron can be transformed through a
network, an M-convex function can be induced through a network. This paper gives a
constructive proof for the induction of an M-convex function. The proof is based on the
correctness of a simple algorithm, which finds an exchangeable element. We also analyze

a behavior of induced functions when they take the value —oo.
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1 Introduction

In 1990, Dress—Wenzel introduced a valuated matroid as a quantitative generalization of a
matroid [1, 2]. A valuated matroid is a pair of a matroid (E,B) and a function w: B —- R

which enjoys the following exchange property:

(VM) VX, Y € B,Vue X—-Y,Fv €Y — X such that X —u+v € B, Y +u—v € B,
and

wX)+wl)wX -—ut+v)+wlY +u—wv).

Such a function w is called a valuation of (E,B).

Recently, Murota introduced the concept of M-convex function [5, 6, 7], which is a quanti-
tative generalization of integral vectors in an integral base polyhedron as well as an extension
of (the negative of) matroid valuation over base polyhedron. It is known that the set of integral

vectors in an integral base polyhedron B C ZF is characterized by the exchange property
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(B-EXC) Vz,y € B, Yu € E with z(u) > y(u), Jv € F with z(v) < y(v) such
that  — xu +xv € B, ¥+ Xu — Xv € B,

where . € {0,1}F is the characteristic vector of u € E. In contrast, an M-convex function
f:Z% - RU{+oo} satisfies, by definition, the following quantitative generalization of the
simultaneous exchange property:

(M-EXC) Vz,y € B, Vu € E with z(u) > y(u), Jv € E with z(v) < y(v) such that

f(z) + f(y) > f@ = xu+ Xo) + F(Y+ Xu— Xo)-

Here dom g denotes the set {z € ZF | g(z) < 400} for g : Z¥ — R U {£oo}. The property
(M-EXC) implies (B-EXC) for dom f of such f. Note that a matroid valuation is nothing but
an M-concave (the negative of M-convex) function f with dom f C {0,1}%.

The framework of M-convex function gives us a new understanding for the well-solvability
of nonlinear discrete optimization problems, e.g., the convex cost flow problem, the nonlinear
resource allocation problem (see [4, 5, 6, 7]). An M-convex function enjoys nice properties such
as the extendability to an ordinary convex function, the success of Fenchel-type duality and a
(discrete) separation theorem, which convince us that the name “M-convex” is reasonable.

In the theory of (poly-)matroid, there have been considered several operations such as
reduction, contraction, etc. (see [3] as a relevant reference). Above all, the induction by
networks is one of the most powerful operations for matroids and base polyhedra and includes
other operations as special cases. Recent works by Murota [5, 7] revealed that the network
induction also applies to M-convex functions.

Let G = (V,A;V*t, V™) be a directed graph with two specified vertex sets V*, V- CV
such that V* NV~ = 0. We denote an upper and lower capacity functions by ¢ : 4 —
Z U {400}, c: A = Z U {—o0}, respectively, and a weight function by v : A — R. For any
function z:V — R, we denote the restriction of z to VT andto V= by (z)* and (z)7,
respectively. Let fT : ZVi S RU {+00} be an M-convex function. For any flow ¢ : A — Z,
its boundary O¢ : V — Z is defined as

Ap(v) = Z{go(a) | a(€ A) leaves v} — Z{cp(a) | a(€ A) enters v} (veV),

and its cost is cost(p) = S {y(a)p(a) | a € A} + fH((¢)T). A flow ¢ is called feasible if it

satisfies the following conditions:
c(a) < pla) <c(a) (a € 4), dp(v)=0(@weV —(VIUVT)), (9p)" € dom fT.
We define a function f:ZY~ — R U {£oco} as follows:

f() { inf{cost(y) | ¢ : feasible flow, (Op)~™ = z} (3 feasible flow ¢ with (9¢)™ = z),
T) =

+o0 (otherwise).



We have the following theorem, which is proved by Murota [5, Theorem 7.2], [7, Theorem 4.14]
based on a characterization of M-convexity by minimizers and on an optimality condition for

the generalized submodular flow problem [6].
Theorem 1.1 The function f is M-convex if it does not take the value —oo.

The objective of this paper is to provide an alternative simpler proof of this theorem.
Our proof is fairly straightforward and constructive, by establishing directly the condition
(M-EXC) for the induced function f. The essence of the proof lies in the correctness of a
simple algorithm, which for any z,y € dom f and w € V~ with z(u) > y(u), finds a vertex
v € V™ with z(v) < y(v) such that f(z — xu+ xo) + F(¥ + Xu — Xv) < f(z) + f(y). More
specifically, our algorithm INDUCTION has the following property:

Theorem 1.2 Given feasible flows ¢,¢ and u € V= with Op(u) > 0y (u), the algorithm
INDUCTION finds feasible flows ¢',1)' and v € V'~ with dp(v) < Oy (v) satisfying (0p')~ =

(09)™ — Xu + Xo, (9P')™ = (0¢)” + Xu — Xo, and
cost(') + cost(1)") < cost(p) + cost(z)).

The proof of this theorem is given in Section 3.
We also analyze a behavior of induced functions when they take the value —oco. Compared
with the case where f does not take —oo, a behavior of f is not known yet when it takes —oo.

Exploiting Theorem 1.2 we show that such f takes —oo for any ‘interior’ vector of dom f.

2 The Proof for the Induction

Based on Theorem 1.2, we first assert a slightly stronger claim than Theorem 1.1. Note that
the induced function f may take the value —oco while an M-convex function does not by

definition.

Theorem 2.1 For any z,y € dom f and uw € V™ with x(u) > y(u), there exists v € V'~
with z(v) < y(v) such that x — xyu + X» € dom f, y+ Xu — Xo € dom f, and

f(m)+f(y)Zf(m_Xu+Xv)+f(y+Xu_Xv)'

Proof. Let {pr}2, {¢¥r}3>; be sequences of feasible flows with (Opr)” =z, (OYr)” =y
such that limg_,, cost(pr) = f(z), limg_oo cost(ypr) = f(y). For each k, Theorem 1.2
assures the existence of feasible flows ¢}, 1} and a vertex vy € V'~ with z(vk) < y(vk) such that
(00))” =@ —Xu+ Xor> (OUL)” = Y+ Xu— Xuy, and cost(p}) + cost(1)}) < cost(pr) + cost(yr)-
Since the vertex set V'~ is finite, there is at least one vertex v appearing infinitely in the

sequence {vg}72 ;. Thus, we have an inequality
f(z)+ f(y) = inf cost(pg)+ inf cost(eg)
kvp=v kivg=v

> inf cost(¢}) + inf cost(yf) > f(z — xu+Xo) + FY+ Xu— Xo). B

k:vp=v k:vp=v



Theorem 2.1 reads as follows if f(z) = —oco or f(y) = —oo:

Corollary 2.2 Let z,y € dom f with either f(z) = —oco or f(y) = —oo. Then, for
any uw € V™ with a(u) > y(u), there exists v € V~ with z(v) < y(v) such that either

f(& = xu+ Xo) = =00 or f(y+ xu— Xu) = —00.

On the other hand, the claim of Theorem 2.1 is just (M-EXC) if f does not take —co.

Exploiting Corollary 2.2, we reveal that f(z) = —oo for any vector z in the ‘interior’ of
dom f if f takes —co. Since dom f fulfills (B-EXC) by Theorem 2.1, there exists a submodular
function p:2Y" — Z U {+oo} such that

dom f ={z € ZV" | a(X) < p(X) (VX CV7), (V") = p(V7)}.

For any vector z € Z%, denote by ||z|| the value Y {z(w) | w € E}. Compare the next theorem
with the related result for the convolution operation [7, Theorem 5.8 (2)], which is a special

case of the network induction [5].
Theorem 2.3 Let g € dom f with f(zg) = —oo. Then f(z) = —oo for all x € I(zg), where

I(zo) = {& € dom f | VX C V™, 20(X) = p(X) if 2(X) = p(X)}.

Proof. We show by induction on the value ||z — zg]|.

Suppose © = xg — xs + xt for s,t € V ,s#t. Let 2’ =2 — x5+ x¢. Forany X C V,
if 2(X) = p(X) and t € X then s € X since zo(X) = z(X). Hence z'(X) = p(X), which
concludes z’ € dom f. Applying Corollary 2.2 to ¢ and z’, we have f(z) = —oo.

Next, assume ||z — z¢|| > 4. Apply Corollary 2.2 to z¢p and  and obtain either f(z¢ —
Xu + Xv) = —00 or f(Z + Xu — Xo) = —00 for u,v € V~ with zg(u) > z(u) and z¢(v) < z(v).
Moreover, if #(X) = p(X)(= 20(X)) then (20 — xu + x0)(X) = (& + xu = x6) (X) = p(X),
yielding ¢ € I(zg — Xu + Xv) N I(z + Xu — Xv). The assumption of the induction implies
f(z) = —oo since ||z — (2o — xu + Xv)|| = ||z — zo|| — 2 and ||z — (= + xu — x0)|| = 2. |

3 An Algorithm

This section proves Theorem 1.2 by showing the algorithm INDUCTION. Assume w.l.o.g. V*1TU
V'~ =V, otherwise extend the function f*: ZV" — R U {+oo} over ZV~V" as

?+($+)$0) - { f+(m+) sz ; g;, (.’.U+ e ZV+’$0 e ZV_(V+UV_))’
—+00 x ,

and reset V1t to V-V~



Input of the algorithm is feasible flows ¢,9¢ and a vertex uw € V'~ with d¢(u) > ¢ (u).
The algorithm maintains a set of four functions ¢',¢’' € Z4, ¥',d' € ZV and a vertex w € V

satisfying the following condition (FBS):

cla) < ¢'(a) < ¢(a), c(a) <¢P'(a) <e(a) (a€A),

(), (d)* €dom £, (V)" = (9¢)” = xu» (d')” = (0Y)™ + Xus
b =0¢" — xw, d' = Y + Xw,

FH (o' o') + FY(@',d) < F*(p,00) + F(4,09),

(FBS)

where FT(¢',b') = Y {v(a)¢'(a) | a € A}+ fT((¥')). We refer to such a tuple (¢',¢’, b, d’, w)
as a flow-base set. Note that b/ and d’ of some flow-base set (¢’,%',b',d',w) are uniquely
determined by ¢', ¢/, and w. Our aim is to obtain a flow-base set (¢',%',,d’,v) such that
v € V™ and 9¢(v) < 8¢ (v) since the flows ¢', 1)’ satisfy the condition of Theorem 1.2.

Algorithm INDUCTION

Step 0: Put k£ =1, (901,¢l,b1,dlavl) = (90,¢78§0 - Xuaa'(;b + Xu,u)'
Step 1: Let (¢',¢',b',d',vi) be a flow-base set with vy, fixed which minimizes the value ||¢' —

'l Set (@s Ys bks Ay vr) as (¢, 9", 0, d o) if [|@" — '] < |lor —9rll, and (o, Yk, bk, di, vk)

otherwise.
Step 2: CASE 1: If vy € V™ and dp(vk) < Y (vk), output (¢}, ¥r, bk, dk, vk) and stop.
CASE 2: If Case 1 does not happen and Ly U Ey, — {aj_1 (if defined)} # @, where

Li={a € A| aleaves v, ¢h(a) > ¥h(a)}, Fi = {a € A|a enters vp, ¢h(a) < vh(a)},

then take any arc ay € Ly U Ey — {ag—1 (if defined)}. Let vgy1 be another end vertex of ay.
Set

¢ilax) =1 (if ax € Ly),
orplar) +1 (if ax € Ey),

Yplar) +1 (if ax € Ly),

pr+1(ar) = { Yrlax) — 1 (if a € Ey).

Yit1(ak) = {
Put pp11(a) = ¢i(a), Yrr1(a) = ¢p(a) (Va € A — ag), bry1 = by, diy1 = dy.

CASE 3: If neither Case 1 nor 2 holds and v, fulfills vy € VT and b}, (vx) < d}(vx), then find
a vertex vgt1 € VT with b} (viy1) > df (vks1) such that

FHO)T + Xon = Xowgs) F 1) = Xop + Xonga) < FHE)T) + FH((dR) ).

Put (@r+1, Yr+15 0kt 15 et 1, V+1) = (@ Yoo Ok + X — Xowgr> Gk — Xog + Xvgyrs Vh41)-
Step 3: Set k =k + 1 and go to Step 1. [End of Algorithm)]

To the end of this section we prove the correctness of the algorithm. Suppose the algorithm
runs correctly until the (k — 1)-st iteration (k > 1). It may be obvious that (¢g, ¥k, bk, dk, Uk)

is a flow-base set.



Lemma 3.1 If Case 3 occurs in the (k—1)-st iteration and (¢}, ¥}, bk, d%, k) = (k> Yk, Ok, Ak, Vi),

then Case 3 does not occur in the k-th iteration.
Proof. By assumption bj,_;(vg) > d}_;(vx) + 1, and therefore b} (vg) > dj(vg) — 1. Thus,
> _{ek(a) — ¥ila) | a leaves v} — Y {p}(a) — Yi(a) | a enters vy}
= Opp(ve) = Op(vr) = (bi(vk) +1) — (d(ve) —=1) > 1.
This means Lj U E # 0 and Case 3 does not appear. [ |

Lemma 3.2 v & {v1, -+, vk_1}.

Proof. Assume to the contrary that vy € {v1,---,vr_1} and let i(< k) be the largest integer

with v; = vg. Note that ¢« < k — 2 and that v;,v;41, -, vk—1 are distinct. Since
F*(h, br) + F (¥5,d7) + F (¢, b) + FF (4, dy) < 2{F " (,09) + F* (¢,09)},

either (¢}, v, b, dk,vi) or (¢h, ¢y, b, d,vi) is a flow-base set. In the following, we derive a
contradiction by showing [l — ¥4]| < |l¢!—4]| and [l — g4 < [l — ¥2]. Since || — 9]l =
l|¢} — ¥r|| by the setting in Step 1, it holds

i = il = lleitr — Yisall = llipa — digall = - = llok — dill-
Therefore, for any j (i +1 < j < k), we have gog- = j, ¢; =1 and

T |51 — il (Case 3), = ' i — %54l (Case 3).

Lemma 3.1 yields that [[¢} — 2]] < [l¢! — ¢![l, ll¢! — ¥l < [l¢ — ¢!l since i <k —2. W
Lemma 3.3 If neither Case 1 nor 2 happens, then vy, satisfies vy € V't and bl (vi) < dj,(vk).
Proof. L;U Ey C {ay_1 (if defined)} holds since Case 2 does not happen, and Ly U E} =

{ak—1} if and only if Case 2 happens in the (k—1)-st iteration and |¢},_;(ak—1) —¥p_1(ak—1)| =
1. Thus,
Ol (k) — 0V (ve) = Y {pk(a) — Yi(a) | a leaves v} — D {pi(a) — Yi(a) | a enters v} <1,
which provides b}, (vg) < d}(vg) since (¢}, ¥}, bk, d}, vi) satisfies (FBS). We also have (b3)” —
(d},)” = (9¢)™ — (0¢)™ — 2Xu, from which it follows

v € {w €V | bp(w) < dj(w)} CVTU{w e V™ | dp(w) < dY(w)} U {u}.

Since Case 1 does not happen, we have only to show v # u. Assume vy = u. Then, k =1
by Lemma 3.2 and Ly U E1 # 0 since 9¢(v1) = dp(u) > ¢ (u) = ¢} (v1). Hence, Case 2

happens necessarily, a contradiction. [ |

The above lemmas imply that the algorithm necessarily terminates in finite iterations and

outputs the desired flow-base set, which concludes the proof of Theorem 1.2.



Acknowledgement

I am grateful to Kazuo Murota and Maiko Shigeno for discussions and their valuable comments

on the manuscript.

References

[1] A. W. M. Dress and W. Wenzel, Valuated matroid: A new look at the greedy algorithm,
Appl. Math. Lett. 3 (1990) 33-35.

[2] A. W. M. Dress and W. Wenzel, Valuated matroids, Adv. Math. 93 (1992), 214-250.

[3] S. Fujishige, Submodular functions and optimization, (Annals of Discrete Mathematics 47,

North-Holland, Amsterdam, 1991).

[4] K. Murota, Valuated matroid intersection, I: optimality criteria, II: algorithms, STAM J.
Discrete Math. 9 (1996), 545-576.

[6] K. Murota, Convexity and Steinitz’s exchange property, Adv. Math. 124 (1996), 272-311.

[6] K. Murota, Submodular flow problem with a nonseparable cost function, Report No. 95843-
OR, Forschungsinstitut fiir Diskrete Mathematik, Universitdt Bonn (1995).

[7] K. Murota, Discrete convex analysis, RIMS preprint, No. 1065, Kyoto University (1996).



