A Linear Time Algorithm for Finding a k-Tree-Core

Akiyoshi SHIOURA * and Takeaki UNO *
(November, 1994)

1 Introduction

Let T = (V,E) be a tree with n vertices. For two vertices u and v, we define the dis-
tance d(u,v) as the number of edges on the unique path between u and v, and d(u, S) =
ming,es d(u, v) for S C V. Given a positive integer k, we consider the problem of find-
ing a k-leaf-subtree (subtree which contains exactly k leaves) S which minimizes D(S) =
> e d(v,S), the sum of the distances from all vertices to S. Such a k-leaf-subtree is called
a k-tree-core of T.

The problem of finding a k-tree-core is one of several types of location problems for a single
facility on a tree which minimizes the sum of the distance. The oldest, posed by Hakimi [2],
is the problem of finding a vertex called a “node median” or a “distance centroid”, which
minimizes the sum of distance. This may be extended naturally to paths , and a path which
minimizes the total distance is called a “core” or “path median”, and linear time algorithms
for finding a core have been proposed by Morgan and Slater [5], and Peng et al. [6]. Minieka
and Patel [3] added a constraint on the length of a path, and defined a “core of length [”
as a path of length [which minimizes the total distance. This problem is extended to a
tree-shaped facility in [4]. On the other hand, the problem of finding a k-tree-core, which
we treat here, adds a different constraint namely such that the subtree must have exactly
k leaves. This problem was first considered by Peng et al.[6] who gave two algorithms for
finding a k-tree-core whose time complexities are O(kn) and O(nlogn). The latter algorithm
can find k-tree-cores for all k in O(nlogn).

In this paper, we propose a linear time algorithm for finding a k-tree-core. Our algorithm
is a modified version of the O(kn)-algorithm of Peng et al. and is very simple while theirs
are little complecated. It first finds a core in linear time, then finds k—2 paths needed to
construct a k-tree-core, and adds them. We show that these added paths have some special
properties, which allows us to find them in O(n) time. Peng et al. showed similar properties,
but our lemmas and proofs are simple and clear. Furthermore, with a slight modification,
our algorithm can find k-tree-cores for all £ in linear time.

We also consider a k-tree-core in weighted tree. By using our algorithm, we can find a
k-tree-core in linear time, but it takes O(nlogn) time to find k-tree-cores for all k. We show
that Q(nlogn) is the lower bound for solving the latter problem, and that therefore our
algorithm is optimal for this.

*Department of Information Sciences, Tokyo Institute of Technology, 2-12-1 Oh-okayama, Meguro-ku,
Tokyo 152, Japan. shioura@is.titech.ac.jp, uno@is.titech.ac.jp

In Section 2, we give some notation and definitions, and show some basic properties about
distance. In Section 3, we prove some useful properties for our algorithm, and propose a
linear time algorithm. Finally we discuss k-tree-cores in a weighted tree in section 4.

2 Preliminaries

Let T'= (V, E) be a tree. P,, denotes the unique path which connects two vertices u and
v. The distance between two vertices u and v is defined by the number of edges in the path
P, and is denoted by d(u,v). For a vertex u and a subtree S in 7', the distance between v
and S is defined by d(v,S) = min,es{d(u, v)}.

Here we define some measure of “centrality” of subtrees in T. For a vertex v, the distance
of v, denoted by D(v), is defined as the sum of the distances between u and v for all vertices
u eV, ie., D(v) = X,evd(u,v). Similarly, for a subtree S'in T, D(S) = X,evd(u, S) is called
the distance of S.

A core of a tree T is a path which minimizes the distance D(P) among all paths P in 7. A
k-tree-core is a subtree which minimizes the distance D(S) among all subtrees S containing
exactly k leaves. We can see that a core is a 2-tree-core. It is easily shown that each leaf of
k-tree-core is also a leaf of T. Note that a k-tree-core is not always uniquely defined.

A vertex v € S is adjacent to a subtree S if there exists an edge (u,v) with u € S. For a
vertex r € T and a vertex v # r, we consider ‘rooting’ 7" at 7. We denote the subtree (of this
rooted tree) rooted at v as T,.(v). More generally, for a subtree S and a vertex v € S, let Ts(v)
be the subtree in 7" induced by the vertex-set Vs(v) = {z|P,,NS = 0 and d(z, S) > d(v, S)}.
If we regard T" as a tree ‘rooted’ at S, Ts(v) can be seen as a subtree rooted at v.

If a subtree S becomes larger, the distance D(S) decreases strictly. So, we consider
decreasing D(S) by adding a path P to a subtree S. The following equation holds for the
decrease of the distance by addition of a path to a subtree.

Property 2.1 Let P be a path in T and v be one of endpoints of P. Let S be any subtree of
T which intersects P only at the vertex v. Then,

D(S)— DS UP) = D(v)—D(P)
Proof:

D(S)=D(SUP) = S {d(u.S)—d(u,SUP)}

- Z(){d(u, v) — d(u, P)} + ;(){d(u, S) —d(u, S)}
— Z(){d(u,v) —d(u, P)} + éz(){d(u,v) —d(u,v)}
- z‘:/{d(u, v) —d(u, P)}

1
This means that for any subtree S which intersects P at only one endpoint v, D(S)—D(SUP)

has the same value. We call this value the distance saving of v and P, and denote it by
DS (v, P). The distance saving has the following property.

Property 2.2 Let v and w be two distinct vertices, and v’ be the vertex in P, adjacent to
v. Then,

DS(v, P,,) = DSV, Pyy) + |Tp(v')]
Proof:

DS(’U,PMU) == D(U) —D(Pmu)

= D(U) — {D(Pm/) — DS(Ula Pv’w)}
= DS(U,PUU/)+DS(UI; Pv’w)
= DSV, Pyw) + |T,(0")]

|
S

|
By this property, we can compute DS(v, P,,) from DS(v', P,,,) immediately. It is one of

the keys of our algorithm.

3 An algorithm for finding a k-tree-core

In this section, we propose an algorithm for finding a k-tree-core. We assume that £ is less
than the number of leaves in T.

Our algorithm is based on the O(kn) algorithm by Peng et al.[6]. Their algorithm finds a
core at first, and adds k—2 paths iteratively. It takes O(n) time for finding each path, hence
O(kn) time is required for finding all k—2 paths. Our algorithm also finds a core in the first
step. After that, we construct a set of paths, and by adding k—2 elements selected from this
set to the core, we get a k-tree-core. We can execute this step in O(n), thus a linear time
algorithm for finding a k-tree-core may be realized. We show some lemmas, which were first
proved by Peng et al.[6].

Lemma 3.1 [6] For any k-tree-core S # T, there erxists a (k+1)-tree-core S’ such that
Scs. 1

By using this lemma, we can construct a (k-+1)-tree-core from a given k-tree-core Sy by
adding a path which minimizes the distance. Here we consider the path which maximizes
DS(v, P). For a subtree S in T and a vertex v ¢ S, let u be the vertex adjacent to v such
that d(u, S) = d(v,S) — 1. When a path P maximizes DS(u, P) among all paths P,,, with
w € Ts(v), we call P the local rooted core of v with respect to S and denote it by LRC(v, S),
The next property is implied by Property 2.2.

Property 3.2 Let S be a subtree in T and v be a vertex which maximizes DS(LRC (v, S))
among all vertices not in S. Then, v is adjacent to S. |

From the definition of local-rooted-core, the previous lemma can be rewritten as follows.

Corollary 3.3 For any k-tree-core S, let P be a local-rooted-core LRC (v, S) which mazi-
mizes the distance saving among all vertices v adjacent to S. Then, SUP is a (k+1)-tree-core.

Now, we consider how to find a local-rooted-core LRC(v,.S). Suppose v is not a leaf of 7.
Let u be a vertex which is adjacent to v and satisfies d(u, S) = d(v,S) — 1. Let {vy,---, v, }
be vertices which are adjacent to v and satisfy d(v;, S) = d(v,S) + 1. Such vertices surely

3

exist because v is not a leaf. From the definition of local-rooted-cores, the following relation
is implied.
DS(LRC(v,S)) = max{DS(u, P,,)|w € Ts(v)}
= max{DS(v, Pw)|w € Ts(v)} + |Ts(v)]
max|max {max{DS (v, Py,)|w € Ts(v;)}}, DS(v, P)| + |Ts(v)]

1<i<r

= max i{{max{DS(v, Py,)|w € Ts(v;)}} + |Ts(v)]

1<e<r

= max{DS(v, LRC(v;,)} + |T5(v)|

By using this relation, we can compute a local-rooted-core LRC (v, S) recursively.
Algorithm Find_LRC(v, S,T) (Find LRC(v,S) for v ¢ S and subtree S C T'.)

Step 0: Let u be the vertex which is adjacent to v and satisfies d(u, S) = d(v, S) — 1.

Step 1: If v is a leaf of T then return the path P,,. Stop.

Step 2: If v is not a leaf of T, then let {vy,---,v,} be vertices which are adjacent to v
and which satisfy d(v;, S) = d(v, S) + 1. Find a local-rooted-core LRC(v;, S) for each
vertex v;.

Step 3: Choose the path P* with the largest value of distance saving.
Step 4: Return the path P* U {(u,v)}. Stop.

Moreover, we can also compute all local-rooted-cores LRC(z, S) for x € Ts(v) simultane-
ously as byproducts. Now we consider the time complexity of this algorithm. Let Time(v)
be the time required to compute LRC(v,S). Then,

Time(v) = éTz’me(vi) + O(deg(v))
= Of Z()deg(u))

= O(Ts(v)])

Hence, it takes O(n) time to compute local-rooted-cores LRC(v, S) for all vertices v & S.
The algorithm of Peng et al. iteratively computes local-rooted-cores k times, and takes
O(kn) time to find a k-tree-core.

In our algorithm for finding a k-tree-core, we compute a core C' first. Then we make a set
of local-rooted-cores LS by using the algorithm Find_LRC(v, S, T). Here we consider local-
rooted-cores produced by the algorithm Find_LRC(v,S,T). When we find LRC(v,S), we
find local-rooted-cores LRC(v;, S) for i = 1,---,r. One of them LRC(v;,S) is included in
LRC(v,S), and the others intersect LRC (v, S) at only one vertex u. We define LS as the set
of maximal local-rooted-cores, i.e., LS = {LRC(v,C) | LRC(v,C) ¢ LRC(w,C),Yw # v}

We also define the body of LRC(v, C) as the sub-path LRC(v,C) N T (v).

Property 3.4

1. Each vertex v € T\C is contained in exactly one body of a local-rooted-core L € LS.

2. For any local-rooted-core L € LS and any vertexr v ¢ L adjacent to the body of L, a
local-rooted-core of v is contained in LS.

Figure 1: The set of local-rooted-cores LS

Proof: Clearly, any vertex w € T'\C'is contained in at least one local-rooted-core of LS. If
w is contained in two bodies of LRC(vy, C') and LRC (v, C'), then LRC(vy,C') C LRC(vq,C)
or LRC(vy,C) C LRC(vy,C). Hence, by definition of LS, LS contain the maximal local-
rooted-core which contains LRC(vy,C) (and LRC(vq, C)).

For a local-rooted-core L € LS, let v € L be any vertex adjacent to the body of L € LS,
and L' € LS be the unique local-rooted-core which contains v in its body. Suppose L' #
LRC(v,C) and let u € L be the vertex which is adjacent to v. Then u is also contained in
the body of L', which is a contradiction. Therefore, L' = LRC (v, C). 1

The next lemma ensures the correctness of our algorithm.

Lemma 3.5
k—2

Let L; be the element in LS with i-th largest value of distance saving. Then, Sy = U L,ucC
i=1
18 a k-tree-core.

Proof: 1If k = 2 then this statement holds obviously. So, for & > 2, we assume that S;_;
is a (k — 1)-tree-core and show that Sy is k-tree-core.

From Corollary 3.3, Sy is a k-tree-core if and only if L o maximizes the distance saving
among all local-rooted-cores LRC'(v,.S) such that v is adjacent to Sy_;. For any vertex v,
if v is adjacent to core C, or v is adjacent the body of some local-rooted-core LRC(zx,C)
and not in LRC(z, ('), then LS has a local-rooted-core LRC (v, C) in it. Therefore, for each

vertex v adjacent to Sg—;, LRC(v,C) € LS\ {L; | i=1,2,---,k=3}, and if LRC(v,C) €
LS\{L;|i=1,2,---,k—3} then v € Sg_;. From Property 2.2, L;_» maximizes the distance
saving among all local-rooted-core LRC (v, S) such that v is adjacent to Sk_1, since Li_o has
the largest value of distance saving in LS\{L; | i = 1,2,---, k—3}. Hence, Sy is a k-tree-core.

|
Now, we formulate our algorithm.

Algorithm Find_k-tree-core(k,T)
Step 1: Find a core C.
Step 2: Compute LS.

Step 3: Sort elements in LS in the decreasing order of the distance saving by using radix
sort.

Step 4: Output C' and the £—2 largest elements in LS.

Theorem 3.6
Algorithm Find_k-tree-core(k,T) outputs a k-tree-core of a tree T in O(n) time and uses
O(n) space.

Proof: Steps 1 and 2 can be done in O(n) time. In Step3, we sort all elements of LS.
Radix sort takes only O(d(n + €)) time and O(n + e) space if each number is a positive
integer less than e?, hence Step3 can be done in O(n) time, because the distance saving of
any path is a positive integer less than n?. The size of the output is at most the size of a
given tree T, and Step 4 takes O(n) time. Hence, this algorithm runs in O(n) time.

In Steps 1, 2, and 4, the memory requirement is proportional to the size of a given graph.
By the above argument about radix sort, we use only O(n) space when we sort all elements
in LS. Therefore, the space complexity is O(n).]

From lemma 3.5, the differences between a k-tree-core and a (k—1)-tree-core is the local-
rooted-core L;_s. Therefore, in the previous algorithm, if we output all local-rooted-cores
Ly, Lo, - - - instead of outputting only Li,---, L o, we can reconstruct all k-tree-cores for
k > 2. That is, we can find all k-tree-cores for any k in linear time.

4 k-tree-cores in weighted graphs

In this section, we discuss the problem of finding a k-tree-core in weighted tree. We consider
a tree T = (V, E) such that each edge e € E has an arbitrary positive length [(e) and each
vertex v € V has an arbitrary positive weight w(v). We define the distance d(u, v) between
vertices u and v by the length of the path P, ie., d(u,v) = Y cp,, l(e). The distance
between one vertex v and one subtree S is defined by d(v, S) = min,eg d(u, v). The distance
of a subtree S is defined as the value D(S) = ¥, oy w(v)d(v, S). By using this distance, we
can define a k-tree-core similarly to the unweighted case. Thus we can find a k-tree-core in
the same manner except for the sorting of the elements of LS. In a weighted graph, we cannot
use radix sort. However, this is no problem because we do not have to sort all elements in
LS to find the k—2 largest elements. In fact, the k-best selection algorithm suffices, and we
can find a k-tree-core in O(n) time.

Next, we consider finding k-tree-cores for all k. In this case, we must sort all elements
in LS and it takes O(nlogn) time to find k-tree-cores by using our algorithm. Here we

6

Figure 2: star-shaped graph GG

show that this is equal to the lower bound of time complexity to output each k-tree-core of
a weighted tree for all k, by reducing the sorting problem to it. It is well-known that the
problem of sorting n numbers requires 2(nlogn) time. We exhibit the fact that the sorting
problem is transformable in linear time to the problem of outputting each k-tree-core, and
prove the lower bound of our problem. For a given sequence of real numbers {rq,...,7,} ,
we consider a star-shaped tree graph G which has vertices {vy, ..., v,12} and edges (v;, vo)
for i = 1,2,---,n+ 2. We assume that all numbers r;(i = 1,---,n) are distinct. In this
graph, vertices {vy,...,Up42} are leaves. We define the weight of each edge (v;, vg) as r; for
i < n, and as a sufficient large value, e.g., max;{r;} + 1 for i > n (see Figure 2). Clearly, a
core C' of the graph G is the path from v, 1 to v, 9. The path consisting of only one edge
(v;,v9) is a local-rooted-core of vertex v; € C'. Let Sy be a k-tree-core of G. We can easily see
that Sy contains edges in {(v;,v) | i = 1,---,n+ 2} with k-th largest weight, and Si11\ Sk
contains the edge (vg,v;) with k-th largest weight. If we output each k-tree-core Sy for all
k by outputting differences Siy1 \ Sk, we can sort numbers {ry,---,r,}. This means that it
requires {2(nlogn) time to find differences between Sy and Sk, for all k.

Acknowledgment

We are greatly indebted to Prof. Akihisa Tamura of the University of Electro-Communications
and Dr. Yoshiko Ikebe of Tokyo Institute of Technology for valuable comments and help on
this manuscript.

References

[1] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, “Introduction to Algorithms”, The
MIT Press, Massachusetts, 1990.

[2] S. L. Hakimi, “Optimum Location of Switching Centers and the Absolute Centers and
Medians of a Graph”, Oper. Res. 12 (1964), 450 - 459.

(3] E. Minieka and N. H. Patel, “On Finding the Core of a Tree with a Specified Length”,
J. Algorithms 4 (1983), 345 - 352.

[4] E. Minieka, “The Optimal Location of a Path or Tree in a Tree Network”, Networks 15,
No. 3 (1985), 309 - 321.

[5] C. A. Morgan and P. J. Slater, “A Linear Algorithm for a Core of a Tree”, J. Algorithms
1 (1980), 247 - 258.

[6] S. Peng, A. B. Stephens, and Y. Yesha, “Algorithms for a Core and k-Tree Core of a
Tree”, J. Algorithms 15 (1993), 143 - 159.

[7] A.B. Stephens, Y. Yesha, and K. Humenik, “Optimal Allocation for Partially Replicated
Database Systems on Tree-Based Networks”, Working paper.

