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Abstract

This paper shows that the minimum ratio canceling algorithm of Wallacher (1989) (and a faster
relaxed version) can be generalized to an algorithm for general linear programs with geometric
convergence. This implies that when we have a negative cycle oracle, this algorithm will compute
an optimal solution in (weakly) polynomial time. We then specialize the algorithm to linear pro-
gramming on unimodular linear spaces, and to the minimum cost flow and (dual) tension problems.
We construct instances proving that even in the network special cases the algorithm is not strongly

polynomial.
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1 Introduction

A popular class of algorithms for the minimum cost flow problem is the cycle canceling algorithms.
This concept originates with Klein [11], and is based on the idea that pushing flow around negative-cost
residual cycles will improve the primal objective. The dual version of cycle canceling is cut canceling,
originating with Hassin [10]. Here we change node potentials across positive-valued cuts to improve
the dual objective. These algorithms are attractive since they are flexible: algorithms with different
behaviors can result from choosing different classes of negative cycles or positive cuts to cancel. See
Shigeno, Iwata, and McCormick [20] for a recent survey of such algorithms.

A naive idea is to cancel most negative cycles, but these are NP-hard to compute, and do not

lead to polynomial algorithms [26]. We could instead use the polynomially-computable most negative
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family of cycles, but this algorithm is again not polynomial, and the same is true for canceling a most
positive (family of) cuts [20] (though canceling relaxed versions of these objects is polynomial [20]).
Goldberg and Tarjan [8] popularized the idea of instead choosing to cancel a cycle whose ratio of cost
to weight was minimum. They chose the weight of each arc to be one, and showed that the resulting
minimum mean cycle canceling algorithm is strongly polynomial.

Wallacher [23] considered several other possibilities for arc weights, and developed polynomial
algorithms. One of his polynomial algorithms uses the arc weight given by the reciprocal of the
residual capacity of the arc; we call this minimum ratio cycle canceling. It turns out that this choice
of arc weights makes it easy to prove a weakly polynomial iteration bound on the algorithm. Later,
his algorithm was extended to linear programs with totally unimodular matrices by McCormick and
Shioura [13], and to general integer programs by Schulz and Weismantel [21]. Recently, Wayne [24]
applied the minimum ratio canceling technique to generalized minimum cost flow to give the first
polynomial combinatorial algorithm for that problem. We combined Wayne’s ideas from [24] and our
ideas from [13] to create the present paper. Subsequent to this paper a common generalization of it
and [21] showed that the same ideas also work for mixed integer programs [14].

One aim of this paper is to show that Wallacher’s minimum ratio canceling algorithm generalizes
to an algorithm for general linear programs that geometrically reduces the gap between the objective
value of our current solution and the optimal objective value. When we have rational data and an
oracle for finding negative cycles we can show that this gap can be driven small enough that it is
possible to round to an exact optimal solution in weakly polynomial time. We show that a faster,
relaxed version of Wallacher’s algorithm also generalizes to linear programming.

An important special case of this is linear programming over a unimodular linear space, namely
the solution set of the system Mz = 0 given by a totally unimodular matrix M. This is a common
generalization of both primal and dual network flow. Karzanov and McCormick [12] showed that
minimum mean cycle canceling can be generalized to a polynomial algorithm for linear programming
in unimodular linear spaces. We show that the specialization of minimum ratio canceling to this case
has a faster iteration bound.

Sections 3 and 4 show how our minimum ratio canceling algorithm further specializes to both the
primal and dual of the minimum cost flow problem. The primal specialization is just Wallacher’s
algorithm [23]. Although most algorithms for the primal minimum cost flow problem have been
dualized (e.g., [10, 3, 4, 20]), we believe that our minimum ratio cut canceling tension algorithm is the
first dualization of the minimum ratio cycle canceling algorithm. We consider a problem equivalent
to dual minimum cost flow called the minimum cost tension problem, which asks for a minimum cost
set of potential differences. This problem has a number of applications (see Rockafellar [18, Chapter
7F]) and algorithms of its own (see Hadjiat [9], or Karzanov and McCormick [12]).

Goldberg and Tarjan’s minimum mean cycle canceling algorithm [8], and Ervolina and McCormick’s
dual maximum mean cut canceling algorithm [4], differ from our algorithms only in the choice of
weights for the denominator of the ratio. Those algorithms are both strongly polynomial.

On the other hand, the running time analysis of our algorithms is quite similar to analyses of the

most helpful cycle canceling algorithm of Weintraub [25] and Barahona and Tardos [2], and the dual



most helpful total cut canceling algorithm of Ervolina and McCormick [3]. Queyranne [16], and [3]
show that these algorithms are not in general strongly polynomial.

This makes it natural to wonder (at least in the primal and dual network flow cases) if our
weakly polynomial bound for minimum ratio canceling can be strengthened to strongly polynomial
bound as is the case for many other network flow algorithms. Sections 3 and 4 construct instances,
based on the instances in [16] and [3], showing that our minimum ratio canceling algorithms are also
not in general strongly polynomial. We follow the proof technique of [16]: a strongly polynomial
algorithm is in particular finite even for irrational data. We show that our algorithms take an infinite
number of iterations when applied to our instances, thereby proving that the algorithms are not
strongly polynomial. This makes it tempting to conjecture that any algorithm based on geometrically
decreasing the objective value gap cannot be strongly polynomial.

Proving that the minimum ratio canceling algorithms are not strongly polynomial has implications
beyond this paper. Our network flow algorithms are special cases of the Schulz and Weismantel [21],
Wayne [24], and mixed integer program [14] results, so our proofs of non-strong polynomiality show

that all of these algorithms are also not strongly polynomial.

2 A Minimum Ratio Cycle Canceling Algorithm

In this section, we present a minimum ratio cycle canceling algorithm for the linear programming
problem. Let M be an n X m (m > 2) real matrix (we notate M as n x m instead of the more usual
m X n to match the canonical case where M is the node-arc incidence matrix of a directed graph).
Put J = {1,2,---,m}. We are given costs c € R’, and upper and lower bounds u € (RU {4+c0})’ and
1€ (RU{—o0})’/. We deal with the following linear programming problem:

(LP) Minimize ¢’z = Ec(])m(]) subject to z€ P={yec R/ | My=0, 1<y <u}.
i=1

We assume that P # () and that (LP) has an optimal solution.

Let z € P. For each j € J, we define forward and back residual capacities by v} (j) = u(j) — 2(5)
and 77 (§) = 2(§) — I(j), respectively. A non-zero vector d € R is called a cycle if it satisfies Md = 0
and its support supp(d) = {j € J | d(j) # 0} is minimal. The (residual) capacity of a cycle d € R’

d@j) > 0} ,min {—% d(j) < 0}] .

A cycle d is called augmenting (w.r.t. z) if cap,(d) > 0, and negative if cd < 0. In this paper, we
assume that there exists no cycle d € RY such that supp(d) C {j € J | I(j) = —o0, u(j) = +o0}

w.r.t.  is defined as

N—

| frd
cap,(d) = min lrjrg}l { 40)

and ¢Td = 0. If such a cycle exists, then we can modify the problem (LP) without changing the
optimal value by putting I(j) = u(j) = 0 for some j € supp(d). Note that this assumption assures the
existence of an optimal extreme point of (LP).

Conditions for optimality and unboundedness of (LP) can be stated in terms of cycles:



Theorem 2.1
(i) z € P is optimal if and only if there is no negative augmenting cycle w.r.t. z.

(ii) (LP) ¢s unbounded if and only if there is a negative cycle with capacity +oo.

Theorem 2.1 (i) gives a generic algorithm for (LP): we can find an optimal solution by iteratively
finding and canceling negative cycles. The performance of this algorithm depends on the class of
negative cycles we choose to cancel. We now describe the class of cycles we will choose to cancel.

For z € P, define w} (j) = 1/r}(j) and w3 (§) =1/7;(5) (7 € J). If r}(j) = +oo (resp. 0), then
we define w} () = 0 (resp. +o0). For any y € R”, we define the weight w,(y) of y w.r.t. z as

we(y) = > _{wd (Ny(5) | y(§) > 0} = > _{wz (y() | y(§) < 0}
jed jeJ

If there is a negative cycle d with w,(d) = 0, then d has infinite capacity, and (LP) is unbounded by
Theorem 2.1 (ii), and we have ruled out such instances. Thus w,(d) > 0 for all negative cycles d. If
z is feasible but non-optimal to (LP) (so that some negative augmenting cycle w.r.t. z exists), then
a minimum ratio cycle w.r.t. ¢ is a (negative) augmenting cycle d minimizing the ratio ¢!d/w,(d).
Note that if d is a negative augmenting cycle, then —oo < ¢f'd/w,(d) < 0.

Any vector y € R’ with My = 0 can be represented as a nonnegative combination of cycles
di,da,--+,dr (k < m) such that for ¢ = 1,---,k and j € J, if d;(j) > 0 (resp. < 0) then y(j) > 0
(resp. < 0). This representation is called a conformal realization of y [18]. This implies that a minimum

ratio cycle w.r.t. a feasible, non-optimal z is an optimal solution of the following fractional problem:

(MRC,) Minimize cTy/w,(y)
subject to My =0,
y() < 0if () = 0, y(i) > 0if rz(j) =0,
yeRY.

That is, for an optimal solution y* € R’ of (MRC,), if y* is decomposed into cycles dq, da, -+, dg in
a conformal realization, then each d; is also optimal for (MRC,).

Algorithm MINRAT is described as follows:

Algorithm MINRAT

Step 0: Find a feasible solution z = 2° € P of (LP).

Step 1: If there is no negative augmenting cycle, then stop; the vector z is optimal.
Step 2: Find a minimum ratio cycle d € R’ w.r.t. z. Let a = cap,(d).

Step 3: Cancel d by setting 2’ = = + ad. Go to Step 1.

The next lemma shows that MINRAT geometrically reduces the gap between the current objective value
and the optimal objective value, which is key to proving that it terminates in a weakly polynomial

number of iterations.

Lemma 2.2 Let z,z’' € P be feasible solutions in the current and nezt iterations of MINRAT, respec-
tively, and d € R? be the cycle chosen in Step 2. Also, let z* € R’ be an optimal solution of (LP).

Then we have



T — z*) 1 cfd  T(z* - 2)
cl@—-=2) . 1 ..
(i) T2 = 1 o and (i) wa(d) © —
Proof. Claim (i) is equivalent to
T(.l
cl@-2) 1 (1)

T(z*—2) " m
Since —r; () < 2*(7) — z(j) < rf (j) for all j € J, the vector z* — z is a feasible solution of (MRC,)
with

we(2* —z) < m. (2)
Since z* — z is feasible for (MRC,) and d is optimal for (MRC,),

Tz’ —2z) Td Tz* - z) T2 —2) _ we(z —2)
we(2' —z)  wy(d) < wy(z* — z) cT(z* — ) = we(z* —2)°

(3)
The definition of o implies that

we(2' — 2) = wy(ad) = aw,(d) > 1. (4)
Combining (2), (3), and (4) yields (1). Claim (ii) follows from (2) and (3). |

Lemma 2.2 will allow us to get very close to an optimal extreme point. To get an exact optimal
solution we will round an approximate solution using only m calls to the oracle (this idea originated

in Wayne [24]). This is based on the following lemma.

Lemma 2.3 A vector z € P is an extreme point of P if and only if there exists no cycle d € RY with
supp(d) C {j € J | 1() < 2(j) <u(f)}-

Based on Lemma 2.3, we can round a non-extreme point 2 € P by iteratively finding a cycle
d € RY such that supp(d) C {j € J | I(j) < 2(j) < u(4)} and ¢Td < 0, and putting z := z + ad with
a = cap,(d). We see from our assumptions that cap,(d) is finite for such d. Since the cardinality
of {j € J |1(j) < (j) < u(j)} decreases in each iteration, this procedure terminates in at most m
iterations.

From now on we assume that entries of the matrix M and the vectors [,u, and ¢ are rational
numbers. As in Grotschel, Lovdsz and Schrijver [5], we define the encoding length of numbers and

vectors as follows. The encoding length of a rational number 7 is

(r) = 2+ [log(lp| + 1)1 + [log(lg| + 1)1,

where p and ¢ (> 0) are relatively prime integers such that » = p/q. The encoding length of a rational
vector z € Q™ is (z) = Y {(2(j)) | 7 € J}. We put

(B) = max{(M(4,5)) [ i=1,--+,m, j € J}, (C)=max{{c(j))]|j €},
(U) = max [max{{l(7)) | j € J, I(j) > —oo}, max{(u(j)) | j € J, u(j) < +o0}].

Put ¢ = m(B) + (U). Grétschel et al. [5] shows that there exists an feasible solution z° and an

optimal solution z* of (LP) such that (z°) and (2*) are at most 4m?p. We assume that we have an

0

oracle that computes such an z° in Step 0 (in practice z° might come from a Phase I procedure), and

that computes a minimum ratio cycle in Step 2.



Theorem 2.4 If the matriz M and the vectors l,u are rational, then MINRAT finds an optimal
solution in O(m*(B) + m3(U) + m%(C)) iterations.
Proof. This proof is similar to Wayne [24, Theorem 5].

Put € = 2-(m{C)+4m%¢)  We first find a vector # € R7 with ¢ (2 — z*) < €2/2 by using MINRAT.
Lemma 2.2 (i) implies that MINRAT requires at most k iterations to compute Z, where k satisfies
(1 - 1/m)kcT (20 — 2*) < €2/2. This yields that k = O(m*(B) + m3(U) + m*(C)).

Suppose that Z is a non-optimal extreme point and that z* is an optimal extreme point. Since the

Tz and cTz* are at most 1/¢, we have Tz > cTz* + €2. Thus

denominators of the rational numbers ¢
any extreme point & with ¢T# < ¢T'# must be optimal. We can obtain such an optimal extreme point

Z of P by canceling cycles at most m times, as explained after Lemma 2.3. |

Therefore MINRAT is an oracle weakly polynomial algorithm for linear programming. In some
applications of this algorithm a special-purpose algorithm is available to solve the minimum ratio
subproblem, and a reasonable initial solution is easily available. See Sections 3 and 4 below for such
subroutines for primal and dual network flow, or Wayne [24] for such a subroutine for generalized

network flow.

2.1 A Faster Relaxed Version of the Algorithm

Wallacher [23] showed that when canceling min ratio cycles for minimum cost flow, it is possible to
replace the (bottleneck) min ratio cycle computation with a much faster negative cycle computation,
while keeping essentially the same iteration bound. Wayne [24], and Schulz and Weismantel [21]
showed that the same idea works for generalized flows and integer programming. Here we show that
this idea extends to linear programming.

Each scaling phase has a fixed parameter value g which is at most half the min ratio value at the
beginning of the phase. For cycle d in R, we define the modified cost of d by cu(d) = cT'd — paw,(d).
Then it is easy to see that d has negative modified cost if and only if ch/wm(d) < p. Such a d can be
computed by a fast negative cycle subroutine, which is typically much faster than a min ratio cycle
subroutine. For example, for generalized flow a negative cycle is a factor of about O(n) faster to
compute than a min ratio cycle [24].

We keep canceling negative cycles w.r.t. ¢, in the scaling phase until none are left (i.e., p is at
most the current min ratio value), at which point we set g < p/2, and start a new phase. We call

this version relazed MINRAT, or RMINRAT.

Lemma 2.5 There are at most 2m cancellations per scaling phase of RMINRAT.

Proof. First we show that canceling negative cycle d (w.r.t. c,) reduces the objective value by less
than p. Rescale d so that cap,(d) = 1, implying that the objective value decreases by cTd. In this
rescaling w,(d) > 1 since at least one j becomes saturated. Thus ¢T'd < pw,(d) < p.

Let 20 be the solution at the beginning of the phase, z* be an optimal solution, and u° be the min
ratio value for 0. Lemma 2.2 (ii) implies that u® < cT(z* — 2%)/m, or T (2* — 2°) > mu® > 2myp.
TZ*

Since each cancellation in the phase brings ¢’z at least u closer to ¢T2*, there can be at most 2m

cancellations in the phase. |



Theorem 2.6 RMINRAT finds an optimal solution in O(m*(B) + m3(U) + m*(C)) cancellations.

Proof. It takes O(m) cancellations in one scaling phase of RMINRAT to reduce our upper bound

on cT'(z — z*) from 2mpu to 2m(u/2), i.e., by a factor of two. It also takes O(m) cancellations of

MINRAT to achieve the same reduction, so they enjoy the same iteration bound. [ |

There are corresponding relaxed versions of all our subsequent specializations of MINRAT.

2.2 Specialization to Linear Programming on Unimodular Spaces

We now restrict M to be an n X m (m > 2) totally unimodular matrix, i.e., any subdeterminant
of M is equal to either 0, +1, or —1. We denote this specialization of (LP) by (LPU). We will use
several well-known facts on totally unimodular matrices (see, e.g., Schrijver [19]). The feasibility and
existence of an optimal solution for (LPU) can be checked in polynomial time with an algorithm of
Tardos [22]. Now M being totally unimodular implies that any cycle is a multiple of a {0, £1} vector,
and hence we regard a cycle as a {0,+1} vector. This implies that if the initial z° is integral and I
and u are integral, then the current solution z is integral in each iteration of MINRAT.

Define C' = max;ey |¢(7)],

JE={eJ|l(G) > -0}, JU ={j €J|uj) < +0}, U = max{r_nax|l(j)|,1_nax|u(j)|}.
jeJE jeJY
In this case we can get a sharper bound on the initial gap:

Lemma 2.7 There ezists an optimal solution z* € R’ of (LPU) with |2*(j)| < mU for all j € J.

Proof. Let 2’ € R’ be an optimal solution of (LPU), and let 2' = Y%, 8;d; (8; > 0) be a conformal
realization of z/. For i = 1,---,k, define J; = {j € JU | d;(j) = +1} U {j € JF | d;(j) = —1}. Then

we claim that

(i) if Jp, # (0, then B, < U,
(ii) if J, = 0 and B, > U, then 2" = Y izh Bid; + Udp, is also an optimal solution.

The claim implies that z* = Y.¥_, min{g;, U}d; is an optimal solution with |2*(7)| < mU for all j € J.
To prove claim (i), let jo € J with di(jo) = +1. Then z'(jo) > 0 and d;(jo) > 0 for all , which
implies that 8, < 2'(jo) < u(jo) < U. The case where dj(jo) = —1 is similar.
Now we show claim (ii). By Lemma 2.1 (ii), dj, is a nonnegative cycle, which implies ¢’ z" < cT2'.
Hence, it suffices to show that I(j) < 2”(j) < u(j) for all j € J. If dp(j) = +1, then I(j) < U <
2"(j) < 400 = u(j) holds. The other cases are similar. ||

We now assume that our oracle finds an initial 2° satisfying the bound of Lemma 2.7 and computes

minimum ratio cycles.

0

Theorem 2.8 If ¢, u, and l are integral and the initial feasible solution x" is integral, then MINRAT

terminates in O(mlog(mCU)) iterations.

Proof. The assumption on z° and Lemma 2.7 imply that ¢T (20 — 2*) is bounded by 2m2CU. Since

T (

most k iterations, where k satisfies (1 — 1/m)*(2m2CU) < 1. This implies that k£ < 3mIn(mCU). H

¢ — 2*) < 1 implies that z is optimal, Lemma 2.2 (i) implies that the algorithm terminates in at



Therefore MINRAT is a faster oracle weakly polynomial algorithm for (LPU) than for (LP). We

again point out that special-purpose subroutines are available for important special cases.

3 Specialization to the Minimum Cost Flow Problem

We are given a directed graph G = (N, A) with |[N| = n and |A| = m, upper and lower bounds
u € (RU{+00})? and I € (RU{—oc0})4, and costs ¢ € R*. For each node v € N, we denote the sets

of arcs leaving and entering v by §tv and 6~ v, respectively. Then the minimum cost flow problem is

(MCF) Minimize Zc(a)m(a)

acA

subject to E z(a) — Z z(a) =0 (v € N),
a€étov a€é~ v
I(a) < z(a) < u(a) (a € A4).

If M € R™™ is the node-arc incidence matrix of G, then the flow conservation constraints can be
written as Mz = 0. Since this M is totally unimodular, (MCF) is a special case of (LPU).

It is well-known that the (matrix) cycles of M are in 1-1 correspondence with the (graph) cycles of
G. Thus the whole machinery of minimum ratio canceling for (LPU) carries over to (MCF) without
even needing to change terminology. We call the version of MINRAT specialized to (MCF) MINRAT-F.

The specialization of Theorem 2.8 to this case is:

Theorem 3.1 (Wallacher [23]) Ifc, u, and | are integral, and the initial feasible flow z° is integral
and satisfies |2°(a)| < mU for all a € A, then MINRAT-F terminates in O(mlog(nCU)) iterations.

0

Such an z° can be found in strongly polynomial time via max flow (Ahuja, Magnanti, and Orlin

2 n3lognloglogn}) time by Megiddo’s

[1]). A minimum ratio cycle can be found in O(min{n?(logn)
parametric search [15]. Hence, MINRAT-F runs in (non-oracle) weakly polynomial time.

In order to show that MINRAT-F is not strongly polynomial, we now show a real-valued instance for
which MINRAT-F does not terminate. Consider the network shown in Figure 1, which is a modification
of the one in Queyranne [16]. Each arc drawn by a bold arrow actually consists of three arcs in series
with the same cost and bounds. The lower bound is 0 for each arc, and the upper bound is indicated
in the figure. Define r = (v/5 — 1)/2. The symbols ‘inf’, S1, S2, and S3 represent the values +co,

(1+7)/2, 1/2, and r/2. These numbers satisfy the identities

Si—r=17r38;, Sy—r>=1r3%8,, and S3—r3=r3S;,

2> 83 >7r3> 8 —r =38, etc., which are needed to

and the inequalities 1 > S; > r > S9 > r
understand the behavior of MINRAT-F on the network. The arc (¢, s) has cost —1, and the four arcs
(s,4),(s,7),(5,t), and (8,t) have large negative costs. Each of the other arcs has cost 0.

When MINRAT-F is applied to this network with the initial feasible flow 2% = 0 € R4, it is easy
to see that the first iteration chooses the cycle with arcs {(s,7),(7,8), (8,%), (¢,s)}, and the second

iteration chooses the cycle with arcs {(s, 4), (4,5), (5,t),(¢,s)}. These two cancellations saturate the



Table 1: Change of low when MINRAT-F is applied to bad instance

flow at the beginning of the iteration
iter. || MRC | cap,(Q) key arcs arcs with upper bound
(1,2) | (4,5) | (7,8) S1 S S3
3k Ql 7,3k—2 0 7,3k—2 7,3k—3 51(1 _ 7,3k—3) 52(1 _ 7,3k—3) 53(1 _ 7,3k—3)
3k+1]| Qs PR [ 362 [ g[8k [ g (1 73F) | Sy(1— #3F-3) | S3(1 — r3*-3)
3k+2 | Qs r3k pdk | p3k-1 0 S1(1 — r3F) Sa(1—r3k) | S3(1 — r3k-3)
3k +3 Ql ,,.3k+1 0 r3k+1 7,3k 51(1 _ ,,,3k) 52(1 _ 7,3k) 53(1 _ ,,.3k)

arcs (s,4), (s,7), (5,t), and (8,t). The flow on the three key arcs is now 215 = 0, 245 = 7, and z73 = 1,
and all other arcs have flow 0.

In the following iterations, the arcs with capacities 1 and r are never contained in canceled cycles,
so the only negative-cost residual arc available is (¢, s). Thus each further cycle Q consists of a shortest
s-t path (w.r.t. lengths w,), together with arc (¢,s). Since 1 + g—l < S% (this is why each bold arc
in Figure 1 is a series of three arcs), the subpath containing the backward (4,5) arc and the forward
Si-arc (4,6) is shorter than the (5,6) Sy arc, so that the first such shortest path uses only arcs with
capacities S; and +oco. Since r% + 5’—2 < S%, and 1,1—3 + S%, < %, the next two cycles use Ss and S3
arcs respectively, and we have a pattern that repeats blocks of three iterations. For g = 1,2,3 the
3k — 1 + g-th iteration (k > 1) cancels the cycle

Q1 = {(51),(1,2),(23),(3,5),(4,5),(4,6),(6,8),(7,8), (7,t), (£, 5)},
Q: = {(s2),(1,2),(1,3),(3,4),(4,5), (5,6),(6,8), (7,8), (7,2), (¢, )},
Q3 = {(s’ 2), (1,2), (1, 3), (3, 5)’ (4, 5), (4, 6), (6, 7)7 (7, 8),(8,t), (t, s)}’

where ()4 consists of all arcs with capacities Sy, the three key arcs, and (,s). The cycle Q4 contains
the key arc with flow 0 at the beginning of its iteration forward, and the two key arcs with positive
flow backward. The iteration pushes 73*~319 units of flow on Qg4, which is determined by the backward
key arc with a smaller flow hitting its lower bound of 0. The flow value on the key arcs and 51, S2,
and S3 arcs changes as noted in Table 1.

Therefore, MINRAT-F requires an infinite number of iterations. This proves:

Theorem 3.2 Algorithm MINRAT-F is not a finite algorithm for real data, so it is not a strongly

polynomial algorithm.

4 Specialization to the Minimum Cost Tension Problem

The minimum cost tension problem has an identical setup to the minimum cost flow problem of the
previous section, except that here we are looking for an optimal set of node potentials * € RY instead
of an optimal flow z € RA. Given potentials 7, we define the associated potential difference, or tension
€ R4 by 7(a) = m; — m; for a = (4,5) € A.



The minimum cost tension problem is

(MCT) Minimize Z c(a)7(a)
acA
subject to I(a) < 7(a) < u(a) (a€ A),

7 € R4 : a tension.

Rockafellar [18] shows that (MCT) is equivalent to the dual of (MCF). Define T to be the matrix
whose rows are the incidence vectors of all fundamental cycles w.r.t. a maximal forest of G. Then T
is a tension if and only if T7 = 0, and T is a totally unimodular matrix. Therefore (MCT) is also a
special case of (LPU).

To describe the cycles of T we need some notation. A cut is a nonempty proper subset of N. For
any cut C C N, denote by §7C' (resp. §~C') the sets of arcs leaving (resp. entering) C. Then a vector
d € {0,£1}4 is a cycle of T if and only if there is some cut C' such that d(a) = +1 exactly on §tC,
and d(a) = —1 exactly on 6=C [18].

With this understanding, given a tension 7 € R4, we can now define residual capacities for arcs
w.r.t. 7, the capacity of a cut C' w.r.t. 7, the weight of C w.r.t. 7, and the cost of C. A cut is
augmenting w.r.t. 7 if 7-(a) > 0 on §7C and r,(a) < 0 on §~C. We cancel an augmenting cut by
increasing 7; by cap,.(C) for i € C, and leaving ; the same for ¢ ¢ C. Algorithm MINRAT specializes
into canceling minimum ratio cuts, which we call MINRAT-T.

The specialization of Theorem 2.8 to this case is:

0

Theorem 4.1 If ¢, u, and | are integral, and the initial tension 7° is integral and satisfies |7%(a)| <

mU for all a € A, then MINRAT-T terminates in O(mlog(nCU)) iterations.

Such a 70 can be found in strongly polynomial time (Ahuja, Magnanti, and Orlin [1]). The current
best (strongly) polynomial bound for finding a minimum ratio cut is O(mTy¢(m,n)) by Radzik
[17]. Here Ty (m,n) is the time required for computing a minimum cut in a directed graph, and
Tac (m,n) = O(min{mn log(n?/m), min{n?/3, ,/m}mlog(n®/m)log U}) by Goldberg-Tarjan [7] and
Goldberg-Rao [6]. Therefore, MINRAT-T runs in (non-oracle) weakly polynomial time.

In order to show that MINRAT-T is not strongly polynomial, we now show a real-valued instance
for which MINRAT-T does not terminate. The network in Figure 2 is just the planar dual of the one
in Figure 1. Each arc drawn by a bold arrow actually consists of three parallel arcs with the same
capacity and cost. The lower bound is 0 for each arc, and the upper bound is shown on each arc. The
symbols ‘inf’, S1, Sa, and S3 again represent the values +oo, (14 7)/2, 1/2, and »/2. The arc (s, t)
has cost —1, and four arcs (2, 1), (s,2),(15,t), and (16, 15) have large negative cost. Each of the other
arcs has cost 0.

Planar duality says that the dual of cycles are cuts, and the dual of a flow is a tension, so that the
planar dual of a shortest path w.r.t. weights w, is a minimum weight cut w.r.t. weights w,. Therefore
the behavior of MINRAT-T on the network in Figure 2 exactly mimics the behavior of MINRAT-F on

the network in Figure 1. Thus MINRAT-T also requires an infinite number of iterations, proving

Theorem 4.2 Algorithm MINRAT-T is not a finite algorithm for real data, so it is not a strongly

polynomial algorithm.
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Figure 1: A bad instance for MINRAT-F
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Figure 2: A bad instance for MINRAT-T

14



