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Abstract

We study combinatorial properties of the optimal value function of the network flow prob-
lem. It is shown by Gale—Politof (1981) that the optimal value function has submodularity
and supermodularity w.r.t. problem parameters such as weights and capacities. In this
paper we shed a new light on this result from the viewpoint of discrete convex analysis to
point out that the submodularity and supermodularity are naturally implied by discrete

convexity, called M-convexity and L-convexity, of the optimal value function.
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1 Introduction

In this paper, we study combinatorial properties of the optimal value function of the network flow
problem. It is shown by Gale-Politof [4] that the optimal value function has submodularity and
supermodularity w.r.t. problem parameters such as weights and capacities. On the other hand, it
is well known in parametric linear programming that the optimal value function has convexity and
concavity w.r.t. problem parameters. The main aim of this paper is to shed a new light on these
results from the viewpoint of discrete convex analysis introduced by Murota [12, 13], and show that
submodularity /supermodularity and convexity/concavity are naturally implied by discrete convexity
called M-convexity and L-convexity of the optimal value function. From the viewpoint of mathemat-
ical economics, our result reveals that the optimal value function of network flow problem has nicer
(stronger) combinatorial properties such as the gross substitutes property than submodularity and

supermodularity.

1.1 Substitutes and Complements in Network Flows

Let G = (V, A) be a directed graph with vertex set V and arc set A, and N € {0,+1, —1}V*4 be the
vertex-arc incidence matrix of G. A flow £ = (£(a) | a € A) is called a circulation if it satisfies the

conservation constraint N§¢ = 0, which can be written as

Z{f(a) | a leaves v} — Z{{(a) | @ enters v} =0 (veV).

For each arc a € A, we are given an upper bound c(a) and a lower bound d(a) for flow in a and a
weight w(a) per unit flow. The mazimum weight circulation problem is to find a circulation & that

maximizes the total weight ) . 4, w(a){(a) subject to the capacity (feasibility) constraint:
d(a) <¢(a) <cla)  (a € A).
We denote by FNF the maximum weight of a feasible circulation, i.e.,
FNF — max{w ¢ | N6 =0, d< ¢ < ¢} (1.1)

Our concern here is how the weight F'NF depends on the problem parameters (w,c,d). Namely,
we are interested in the function FN¥ = FNF(y ¢, d) in w € R? and ¢,d € RA. We also consider the
case where parameters are restricted to be integral, and denote by FgF the function FNF restricted
to integer parameters (w,c,d) € Z4 x Z4 x Z4.

We first look at submodularity and supermodularity. Two arcs are said to be “parallel” if every
(undirected) simple cycle containing both of them orients them in the opposite direction, and “series”
if every (undirected) simple cycle containing both of them orients them in the same direction. A set
of arcs is said to be “parallel” if it consists of pairwise “parallel” arcs, and “series” if it consists of
pairwise “series” arcs. With notations wp = (w(a) | a € P), cp = (c(a) | a € P), dp = (d(a) | a € P),
wg = (w(a) |a € 9), cs = (cla) | a € S5), and dg = (d(a) | a € S), the following statements hold true.



Theorem 1.1 (Gale—Politof [4]). Let P be a “parallel” arc set and S a “series” arc set.
(i) FNY is submodular in wp, in cp, and in dp.

(ii) FNF is supermodular in wgs, in cg, and in dg.

See [5, 6, 7, 8, 21] for extensions of this result.

As for convexity and concavity, the following is a well-known fact in parametric linear programming.
Proposition 1.2. FNF s convex in w and concave in ¢ and in d.
Combining Theorem 1.1 and Proposition 1.2 yields that

FNF s submodular and convex in wp,

FNF is  submodular and concave in cp and in dp,
NF ; . (1.2)
F~" is supermodular and convex in wg,

FNF is  supermodular and concave in cg and in dg.

Thus all combinations of submodularity /supermodularity and convexity/concavity arise in our net-
work flow problem. Although submodularity and convexity are mutually independent properties in
general, the combinations of submodularity /supermodularity and convexity /concavity in (1.2) are not
accidental phenomena but logical consequences that can be explained in terms of M-convexity and
L-convexity.

The concepts of M-convex and L-convex functions are introduced by Murota [12, 13], aiming to
identify a well-behaved structure in nonlinear combinatorial optimization. These concepts were orig-
inally defined for functions over the integer lattice; subsequently, their variants called M?-convexity
and Li-convexity were introduced by Murota-Shioura [15] and by Fujishige-Murota. [2], respectively.
M-/ M?-convex and L- / Li-convex functions enjoy a number of nice properties that are expected of “dis-
crete convex functions” [14]. In general, Li-convexity implies submodularity by definition, whereas
MU-convexity implies supermodularity [17]. Accordingly, Li-concavity implies supermodularity and
Mi-concavity submodularity. Recently, Murota—Shioura [16, 18] extended these concepts to con-
vex functions defined over the real space, aiming at clarifying a well-behaved structure in nonlinear
combinatorial optimization problems in continuous variables. It is shown that most of the previous
combinatorial results extend to M-/M!-convex and L-/Lf-convex functions over the real space.

In this paper, we show that the function FN' (and F3'F) defined by (1.1) is endowed with M-
convexity and Li-convexity as follows, where the definitions of M?-convexity and Li-convexity are given

in Section 2.

Theorem 1.3. Let P be a “parallel” arc set and S a “series” arc set.
(i) FNY s LA-convex in wp € RY and MP-convex in ws € RY.

(ii) FNF is MB-concave in cp € RF and Li-concave in cs € RS.

(iii) FN¥ is M-concave in dp € RY and Lf-concave in dg € RS,

Theorem 1.4. Let P be a “parallel” arc set and S a “series” arc set.
(i) FRY is LB-convex in wp € Z¥ and Mb-conver in ws € Z5.

(i) FYF is MB-concave in cp € Z¥ and LP-concave in cs € Z5.

(iii) FYF is M*-concave in dp € ZF and Li-concave in dg € Z5.



With the aid of the general facts that MP-convexity implies supermodularity [16, 17, 18] and LA
convexity submodularity, Theorem 1.3 above provides us with a somewhat deeper understanding of
(1.2). Namely, it is understood that

FNF g Li-convex, hence submodular and convex, in wp,
FNF is Mf-concave, hence submodular and concave, in ¢p and in dp,
FNF is Mf-convex, hence supermodular and convex, in wg,

FNF js Li-concave, hence supermodular and concave, in c¢g and in dg.
With economic terms of substitutes and complements we have the following correspondences:

f is submodular <= goods are substitutes,

f is supermodular <= goods are complements,

where f is interpreted as representing a utility function. On the other hand, MP-concave functions
over the integer lattice provide with a natural model of utility functions in an economy with indi-
visible commodities (see [14, Section 11.3], [25]). It is shown in [3, 20] that under some appropriate
assumptions Mi-concavity is equivalent to nice properties such as the gross substitutes property [11],
and the single improvement condition and the no complementarity condition [9]. From the viewpoint
of mathematical economics, Theorems 1.3 and 1.4, together with established results in discrete convex
analysis [14], show that the optimal value functions FNF and F%\IF have nice combinatorial properties

such as the gross substitutes property in addition to submodularity and supermodularity.

1.2 Extension to Linear and Separable Concave Programs

Our results can be extended to general linear and nonlinear programs as follows.

We first consider the extension to a more general linear program
F* (w, ¢, d) = max{w"¢ [N =0, d <€ <c}, (1.3)

where the coefficient matrix N can be any real matrix with rows and columns indexed by V and A,
respectively. We also denote by F%P the function FM¥ restricted to integer parameters (w,c,d) €
ZA x Z4 x ZA. For any distinct elements a,b € A, we say that a and b are substitutes (resp.,
complements) if every circuit m € R4 satisfies 7(a) - w(b) < 0 (vesp., 7(a) - w(b) > 0), where 7 € R4 is
said to be a circuit if it is a nonzero vector such that N7 = 0 and its support supp(7) is minimal. When
N is the incidence matrix of a directed graph, elements a and b are substitutes (resp., complements)
if and only if the arcs a and b are “parallel” (resp., “series”). For any A’ C A, we say that A’ is a set
of substitutes (resp., complements) if it consists of pairwise substitutes (resp., complements) elements.

Theorem 1.1 on submodularity and supermodularity is extended as follows.

Theorem 1.5 ([6, 7, 21]). Let P C A be a set of substitutes, and S C A a set of complements.
(i) F™ is submodular in wp, in cp, and in dp.

(i) FY is supermodular in wg, in cg, and in dg.



Our results can also be extended to the case where the matrix N is totally unimodular. Recall
that a matrix NV is said to be totally unimodular if any subdeterminant of IV is equal to either 0,
+1, or —1. The incidence matrix of a directed graph is totally unimodular, and hence the following

theorems contain Theorems 1.3 and 1.4 as special cases.

Theorem 1.6. Let P C A be a set of substitutes, and S C A a set of complements. Suppose that the
matriz N in (1.3) is totally unimodular.

(i) F'P is [F-convex in wp € RF and M*-convex in wg € RS,

(ii) FLP is MB-concave in cp € RY and L-concave in cs € RS,

(iii) FTF is Mi-concave in dp € RF and Li-concave in ds € RY.

Theorem 1.7. Let P C A be a set of substitutes, and S C A a set of complements. Suppose that the
matriz N in (1.3) is totally unimodular.

(i) FEY is LE-convex in wp € Z¥ and Mb-convex in wg € Z5.

(i) FEP is Mt-concave in cp € ZF and L*-concave in cs € Z5.

(iit) FLY is MP-concave in dp € Z¥ and LA-concave in ds € Z5.

We then consider a further extension to a nonlinear program with a separable concave objective

function

F39(c,d) = max{) _ fa(&) | N =0, d <€ <}, (1.4)

acA
where f, : R — R (a € A) is a family of univariate concave functions. Since the feasible region is given
by a bounded polyhedron, the nonlinear program (1.4) has an optimal solution if the feasible region

is nonempty [22, 23, 24]. We also denote by FZSC the function FS€ restricted to integer parameters
(c,d) € ZA x Z4.

Theorem 1.8. Let P C A be a set of substitutes, and S C A a set of complements. Suppose that the
matriz N in (1.4) is totally unimodular.

(i) FSC is MP-concave in cp € RY and L8-concave in cs € RS.

(ii) FSC is Mf-concave in dp € RF and Lf-concave in ds € RS.

Theorem 1.9. Let P C A be a set of substitutes, and S C A a set of complements. Suppose that the
matriz N in (1.4) is totally unimodular.

(i) F5C is MP-concave in cp € Z¥ and L8-concave in cs € Z5.

(i) F$€ is Mf-concave in dp € Z¥ and LF-concave in dg € Z5.

Proofs of the theorems above are given in Section 3.

2 Definitions of M-convex and L-convex Functions

2.1 M-convex and L-convex Functions over the Integer Lattice

Let n be a positive integer. A function f : Z" — RU{+o0} is said to be M-convez if domg f # () and
f satisfies (M-EXC[Z]):



(M-EXCIZ]) Vx,y € domg f, Vi € supp™ (z — y), 35 € supp™ (z — y):
f@)+ f(y) > flz—xi+x5) + Fy+xi — X)),

where

domg f ={x € Z" | f(z) < +o0},
supp’ (z) = {i | z() > 0}, supp™(z) ={i|z(i) <0}  (z€R"),
Xi € {0,1}": the i-th unit vector (i = 1,2,...,n).

A function f : Z" — R U {+oc} is said to be Mi-convez if the function f : Z" x Z — R U {400}
defined by

+oo  (otherwise)

N ,x0) €L X Zy 9= —> 1, x(1)),
Fla.z0) = { @) ((@.20) € 2" x Z, 2= =1L 2(0))
is M-convex. MbB-convexity of a function f is characterized by the following property [15, Theorem
4.2]:
(M!-EXC[Z]) Va,y € dom f, Vi € supp™ (z — ), Ij € supp~(z — y) U {0}:

f@)+ fly) > fle—xi+x5) + Fy+Xi — X5)s

where yg = 0 by convention. A function f : Z" — R U {—o0} is said to be M-concave (resp.,
Md-concave) if —f is M-convex (resp., Mf-convex).

On the other hand, a function g : Z" — R U {400} is said to be L-convez if domz g # () and g
satisfies (LF1[Z]) and (LF2[Z]):

(LF1[Z]) g is submodular, i.e., g(p) +g(q) > g(pV q)+g(p ANq) (Vp,q € Z™),
(LF2[Z]) dr € Rsuch that g(p+ A1) =g(p)+\r (VpeZ™ \N€Z),

where pV q,p A g € R" are vectors defined by

(pV @)(i) = max{p(i), q(i)}, (p A @)(i) = min{p(i),q(3)}  (i=1,2,...,n).

A function g : Z" — RU{+o0} is called Lf-convez if the function § : Z" x Z — R U {+o0} defined by

gp,po) =9(p—pol)  ((p,po) €Z" x Z)

is L-convex. A function g : Z" — R U {—oc} is said to be L-concave (resp., Li-concave) if —g is
L-convex (resp., Li-convex).

Li-convexity implies submodularity by definition, whereas Mi-convexity implies supermodularity.

Proposition 2.1 ([17, Theorem 3.8]). An M:-convex function f : Z" — R U {400} satisfies the

supermodular inequality:

f@)+fly) < flavy)+ flany)  (Vo,y € ZM).



2.2 Closed Proper M-convex and L-convex Functions

A function f: R™ — R U {400} is said to be closed proper convex if it is a convex function such
that the effective domain dom f = {z € R" | f(z) < +oco} is nonempty and the epigraph {(z,«a) €
R" xR |a> f(z)} is a closed set [22, 24]. A function f: R" — RU{—o0} is said to be closed proper
concave if —f is closed proper convex.

A closed proper convex function f : R"™ — R U {+oc} is said to be M-convez if dom f # () and f
satisfies (M-EXC[R]):

(M-EXCJRY]) Vz,y € dom f, Vi € supp™t (z — y), 3j € supp™(z — y), Jag > O:
f@) +fy) = fle—ala—xi) +fy+ala—x;))  (Ya€[0,a)),

where [0,ap] = {a € R| 0 < a < ag}. A closed proper convex function f: R" — R U {400} is said
to be Mi-convez if the function f: R" x R — RU {400} defined by

- { f(@) ((z,20) ER" X R, 9= — Y1 2()),

f@,@0) = +oo  (otherwise)

is M-convex. MU-convexity of a closed proper convex function f is characterized by the following

property [19, Theorem 2.3]:

(M!-EXC[R]) Vz,y € dom f, Vi € supp™ (z — y), 3j € supp~ (z — ) U {0}, oy > O:
f@)+fy) = fla—alu—x;) + fly+ala—x;)) (Vo €0, ).

A closed proper concave function f: R® — R U {—o0} is said to be M-concave (vesp., M*-concave) if
—f is M-convex (resp., Mi-convex).

On the other hand, a closed proper convex function g : R™ — R U {400} is said to be L-convez if
dom g # () and g satisfies (LF1) and (LF2):

(LF1[R]) g is submodular, i.e., g(p) + g(q) > g(pV q) + g(p A\ q) (Vp,q € R™),
(LF2[R]) dr € R such that g(p+ A1) =g(p) + Ar (Vp € R", A € R);

g is called Li-convez if the function §: R” x R — R U {+o0} defined by

9(p,po) =g —prol)  ((p,po) € R" x R)

is L-convex. A closed proper concave function g : R® — R U {—o00} is said to be L-concave (resp.,
LA-concave) if —g is L-convex (resp., Li-convex).
Closed proper Li-convexity implies submodularity by definition, whereas closed proper Mi-convexity

implies supermodularity.

Proposition 2.2 ([18, Proposition 3.4]). A closed proper Mt-convex function f : R — RU {400}

satisfies the supermodular inequality:

f@)+fy) < flzvy) +flzny)  (Vo,y € R").



3 Proofs

In this section we prove Theorems 1.6 and 1.8. Theorems 1.7 and 1.9 can be proven in the same way,
and Theorems 1.3 and 1.4 are immediate corollaries of Theorems 1.6 and 1.7, respectively. The proof

of Theorem 1.8 relies on the property of univariate concave functions that

fa) + fa(Q) < fa(n+0) + fa(C=0) (Vn,¢ € R withn <(, 0 <V6 < (—n). (3.1)

In the following, we show the properties of FF and FSC w.r.t. the weight w and the upper bound
c. Then, the properties of FIF and FSC w.r.t. the lower bound d can be shown as follows. By the
definition, a function f(z) is Mi-concave (resp., Li-concave) in z if and only if f(—z') is MP-concave

(resp., Li-concave) in 2. Since the optimal value F5€ is rewritten as

F3¢ =max{) _ fa(la) [N =0, d< &<} =max{) _ fo(-&) | N =0, —c<& < d},
acA acA
Mi-concavity in dp (resp., Li-concavity in dg) follows immediately from Mi-concavity in cp (resp.,
Li-concavity in cg).
To the end of this section we assume that N is a totally unimodular matrix. Then, any circuit is
a multiple of a {0,+1, —1} vector, and accordingly, we assume in the following that every circuit is a
{0,+1, —1} vector.

3.1 Basic Properties of Sets of Substitutes and Complements

We start with basic properties of sets of substitutes and complements that we use in the proof. The
main technical tool in the proof is the conformal decomposition (see, e.g., [1, 10, 23]) of a vector

with V¢ = 0, which is a representation of £ as a positive sum of circuits conformal to &, i.e.,

E=Y Bim,
=1

where 3; > 0 and 7; : A — R is a circuit with supp™(7;) C supp™(£) and supp™(7;) C supp~(§) for

i=1,2,...,m.

Proposition 3.1. Let m be a circuit.
(i) [supp™(m) N P| <1 and |supp™(w) N P| < 1 for any set P of substitutes.
(i) |[suppt(7m) N S| =0 or [supp (w) N S| =0 for any set S of complements.

Proposition 3.2. Let S be a set of complements, and & and E be optimal solutions of the linear

program of the form (1.3). Then, there exist some optimal solutions {x and &, such that

¢nla) = min{é(a),£(a)},  &v(a) = max{&(a),£(a)}  (a€S). (3.2)
Proof. Consider a conformal decomposition Y ", B;m; of a vector '{ — &, where we assume that
suppT (m;)) NS # 0 for i = 1,2,...,¢ and supp™ (m;) NS =0 for i = £+ 1,0+ 2,...,m. Then, it follows
from Proposition 3.1 (ii) that supp™(m;)NS = @ fori = 1,2,...,£. Therefore, {4 = {4700, Bim; and
&y =&+ Zle B;m; are feasible solutions satisfying the condition (3.2). Since £ 4+ B;m; and £ — B;m; are

feasible solutions, we have w'm; = 0 for alli = 1,2, ..., m. Hence, £, and &y are optimal solutions. [J



Proposition 3.3. Let S be a set of complements, and w1 and w2 be circuits. If supp™ (m1)Nsupp™ (m2)N
S # (0, then there exists a circuit ™ such that

supp™ (7) C supp™ (71) Usupp®(m2),  supp™ () C supp~(m1) Usupp ™ (m2),
supp™ () NS = (supp™ (m1) Usupp™(ma)) N S.

Proof. We denote S;” = supp™(m;), S; = supp (m;), and S; = supp(m;) for i = 1,2. By Proposition
3.1 (ii) and S NSF NS # 0, we have S;NS =S NS and S2NS=S57NS. Letac (S5\S)NS.

We have a ¢ ST, and therefore a ¢ S;. In the following, we show that there exists a circuit 7’ such
that

supp™ (n') C S USY, supp~ (') C ST US,, (3.3)
suppt (') NS D (ST u{a})nS. (3.4)

Repeating this we can find 7.

By the conformal decomposition of w9 — 71, there exists some circuit 7 such that
+(5 + ) g — (4 - of
a € supp™ (7) C S5 UST, supp” (7)) € S5 U ST . (3.5)

We assume that supp(7)\ S is minimal among all such circuits. Put 7’ = m14+7#. Then, 7’ is a circuit, as
shown later. From (3.5) we have the condition (3.3) and a € supp™ (7/)NS. Since a € supp™ (7)N S, we
have supp~ (7)N.S = () by Proposition 3.1 (ii). Therefore, S; NS = (S \supp~(#))NS C supp*(7')NS,
implying the condition (3.4).

We now prove that 7’ is a circuit. Since N7’ = 0, there exists some circuit 7 satisfying

1

a € supp™ (7") C supp™ (1), supp™(x") C supp~(n'). (3.6)
We will show that ©” = /.

Claim 1: supp(r’ — ") C Si.

[Proof of Claim]  The vector ©” — m; satisfies N(7” — 1) = 0, a € supp™ (7" — m) C S U Sy, and
supp~ (7" —m) C Sy UST. Forb € A\S; we have 7t(b) = 7/(b)—71(b) = 7'(b) and 7" (b) —71(b) = 7" (b).
Therefore, it follows from (3.6) that

supp (1" —m1) \ S1 Csupp™ (7) \ S1,  supp™ (7" —m1) \ S1 C supp” () \ S1.
Hence, the choice of @ implies that supp(n” — m1) \ S1 = supp(#) \ S1, from which follows 7”(b) =
7 (b) — 71 (b) = w(b) = «'(b) for all b € A\ Sj. [End of Claim]
Claim 2: supp(7’) NS; € Si.
[Proof of Claim] ~ We have supp(7) C S U Sz by (3.5). Since S; NS # () by the assumption and 7o

is a circuit, we have supp(7) N S1 # (. This implies supp(7’) N S1 € 57 since 7 = m + 7.
[End of Claim]

It follows from supp(7”) C supp(n’) and Claims 1 and 2 that supp(#«’ — 7”) C supp(«') N S; € Si.

This implies 7’ — 7" = 0 since N(7' — 7”") = 0 and 7 is a circuit. This completes the proof. d



Proposition 3.4. Let S be a set of complements. For any vector § with N§ = 0 and a, € S\supp~(£),

there exists a conformal decomposition Y ;" | Bim; of & and an integer £ with 0 < € < m such that
a, € supp ' (m1)NS C supp™ (m2)NS C -+ Csupp’ (m)NS, mi(ay) =0 (i = +1,0+2,...,m). (3.7)

Proof. 1f £(a.) = 0, then any conformal decomposition of ¢ satisfies the condition (3.7) with ¢ = 0.
Otherwise, put

1= {m | 7 : circuit, a, € supp™(m) C supp™(£), supp™ (m) C supp™ (£)}.

Let 7, be a circuit in II such that supp™ (m,) NS is maximal among all circuits in II. By Proposition
3.3, we have supp™ () NS C supp™t () NS for all 7 € II. Let 8 = min{|{(a)| | a € supp(m.)} (> 0),
and put ¢ = £ — fBm,.. Then, we have supp™(¢) C supp™(€), supp™ (£') C supp~(£), and there exists
some b € supp(&) with &'(b) = 0. Repeating this argument, we can find a conformal decomposition
satisfying (3.7). O

3.2 Proof of L*-convexity in wp

We prove the Li-convexity of the function F* in wp, the former part of Theorem 1.6 (i).
We denote F' = FP for simplicity. Li-convexity of F' in wp is equivalent to submodularity of

F(w —woxp,¢,d) in (wp,wp), which in turn is equivalent to

F(UJ + )‘Xaaca d) +F(w +MXb7 c, d) > F(wvca d) +F(w + AX(L +1quaCa d)v (38)
F(w_l_)‘xaacad) +F(UJ—MXP,C,d) > F(UJ,C,d) +F(w+AXa_/JJXP707d) (39)

for a,b € P with a # b and A\, u € Ry, where xp € {0,1}* denotes the characteristic vector of P C A.
To show (3.8) let £ and gbe optimal solutions for w and w + Axq + pxs- We can establish (3.8)

by constructing feasible solutions &, and &, such that

Gt &=E+8 M)~ E@)] + pléd) — E0)] >0, (3.10)
since this implies
(w + Xxa) "€ + (w + pxp) & > wE + (w + Axa + px0)"E,

of which the left-hand side is bounded by F'(w+ Axq, ¢, d) + F(w + wxs, ¢, d) and the right-hand side is
equal to F'(w, ¢, d)+F(w+Axq+puxp, ¢, d). 1f g(a) < &(a), we can take £, = £ and &, = € to meet (3.10).
If £(b) < £(b), we can take &, = € and &, = £ to meet (3.10). Otherwise, we make use of the conformal
decomposition g— E=>", Bim. Since a € supp+(g— ¢) we may assume m;(a) >0 fori=1,2,...,¢
and mi(a) =0 fori =€+ 1,0+ 2,...,m. We have m;(b) = 0 for i = 1,2,...,¢ by Proposition 3.1
(i), since P is a set of substitutes and {a,b} C supp+(£~— €). Therefore, §, = £ + Zle B;m; and
& =&+ > L, 1 Bim; are feasible solutions that satisfy (3.10).

To show (3.9) let ¢ and € be optimal solutions for w and w + Ax, — pxp. We can establish (3.9)

by constructing feasible solutions &, and {p such that

Satbp =648 MNla) —E@]+pd_&le) =D ép(e)] 20 (3.11)

ecP eeP



since this implies

(w + Axa) T + (w — pxp)Tep > wTe + (w+ Axa — pxp) e
If g(a) < &(a), we can take & = £ and {p = € to meet (3.11). Otherwise we use the conformal
decomposition £ — £ = >, Bimi, in which we assume 7;(a) > 0 for ¢ = 1,2,...,¢ and m;(a) = 0 for
i=/0+1,0+2,...,m. Since P is a set of substitutes we have [supp ™ (7;) N P| < 1 by Proposition 3.1 (i),
and hence ) pmi(e) > 0 for i = 1,2,..., L. Therefore, £, = £+ Zle Bim; and Ep = £+ 10, Bimi
are feasible solutions that satisfy (3.11).

3.3 Proof of M!-concavity in cp

We prove the MB-concavity of the function FSC in cp, the former part of Theorem 1.8 (i). This
contains the former part of Theorem 1.6 (ii) as a special case.
We denote F = FSC for simplicity. We prove the M?-concavity of F' in cp by establishing (Mh—

EXCIR]) for —F as a function in cp. In our notation this reads as follows:

Let c1, co € RA be capacities with ¢1(e) = cz(e) for all e € A\ P. For each a € supp*(c; —
c2), there exist b € supp™(c; — ¢2) U {0} and a positive number o such that

F(c1,d) + F(eg,d) < Fler — alxa — xp),d) + F(ea + a(xa — Xp),d) (Va € [0, ag))-

Let & and & be optimal solutions for ¢; and ¢, respectively. We shall find ag > 0 and b € supp™ (¢ —
¢2) U {0} such that, for any « € [0, ap], there exist vectors ] and &, with N¢| = NE&, = 0 such that

& +& =6 +¢&,
d<& <eci—oalxa—xp), d<& <co+alxa—Xp), (3.12)
NG <SENEE<EVE <LV &

If &1(a) < c1(a), we can take ag = c1(a) —&1(a), b =0, & = & and & = & to meet (3.12). Suppose
& (a) = c1(a). We have & (a) = c1(a) > ca(a) > &2(a). Let m be a circuit such that a € supp™ () C
supp™ (&1 — &) and supp ™ (7) C supp (§1 — &). Since P is a set of substitutes and a € supp™(7), we
have supp™ (7)) N P = {a} and |supp~ (w) N P| < 1 by Proposition 3.1 (i). If [supp™ (7) N P| = 1, define
b by {b} = supp™ (7) N P; otherwise put b = 0. We put oy = min{|&;(e) — &a(e)| | e € supp(m)}. Then

& =& —am and & = & + am satisty (3.12) if a € [0, ag].

3.4 Proof of M!-convexity in wg

We prove the Mf-convexity of the function F“' in wg, the latter part of Theorem 1.6 (i).
We denote F' = FP for simplicity. We prove the M-convexity of F in wg by establishing (Mh—
EXCIR]). In our notation this reads as follows:

Let wy, wy € RA be weights with wy(e) = ws(e) for all e € A\ S. For each a € supp™ (w; —
wy), there exist b € supp™ (w1 —wsz) U {0} and a positive number aq such that

F(wi,c,d)+F(wa,c,d) > Fwi—a(xe—xp), ¢ d)+F(wata(xe—xp), ¢, d) (Vo € [0, ag])-

10



Let & and & be optimal solutions for wy and ws, respectively, with £ (a) minimum and &2(a) maxi-

muin.

Proposition 3.5. There exists ag > 0 such that & is optimal for wi — ax, and & is optimal for

wa + axg for all a € |0, ap).

Proof. For any circuit 7 such that 7(a) = —1 and d < & + 7 < ¢ for some S > 0, we have
wi (€1+Bm) < wi&; by the choice of &. Hence, we have wi T < 0 for any such circuit 7. Let a3 > 0 be
the minimum of —wi m over all such circuits 7; if there exists no such circuit m, then we put a3 = +oo0.
Then, £; is optimal for w1 — ax, for all a € [0, o], since (w1 — axa)T (&1 + Br) < (w1 — axa) €y for
any 3 > 0 and circuit 7 such that d < & + Br < c. Similarly, let as > 0 be the minimum of —wJ 7
over all circuits 7 such that 7(a) = 1 and d < & + Or < ¢ for some 3 > 0. Then & is optimal for

wo + ax, for all a € [0, as]. Put ap = min(ay, as). O
If & (a) > &(a), we can take b =0 in (MI-EXC[RY)), since

F(wla C, d) + F(MQa C, d) = w}‘gl + w2T£2
> (w1 —axae) &+ (e + axe) & = F(wy — axa. ¢, d) + F (w2 + axa, ¢, d),
where the last equality is by Proposition 3.5. In what follows we assume &;(a) < &2(a).
By Proposition 3.2, we can impose further conditions on & and & that, for each b € S\ {a},

€1(b) is maximum among all optimal & for wy with & (a) minimum, and &3(b) is minimum among all

optimal & for we with &3(a) maximum.
Proposition 3.6. There exists oy > 0 such that & is optimal for w1 — a(x. — x») and & is optimal

for wa + a(xq — xp) for all b€ S\ {a} and for all o € [0, ay).

Proof. For any circuit = such that mw(a) — w(b) = —1 for some b € S\ {a} and d < & + B < ¢ for
some 3 > 0, we have wi (& + 1) < wi& by the choice of &. Hence, we have win < 0 for any

such circuit 7. Let a; > 0 be the minimum of —wi 7 over all such circuits 7. Then &; is optimal for

w1 — axe — Xxp) for all @ € [0,]. Similarly, let as > 0 be the minimum of —wJ 7 over all circuits

7 such that 7(a) — 7(b) = 1 for some b € S\ {a} and d < & + fr < ¢ for some § > 0. Then &, is
optimal for wse + a(x, — xp) for all a € [0, ag]. Put ap = min(ay, ag). O

Proposition 3.6 implies that for all b € S\ {a} and « € [0, ag] we have
F(wy,e,d) + F(wz,e,d) — F(wi — a(Xa — Xb), €. d) — F(wz + a(xa — Xp), ¢,d)
= wié +wy & — (w1 — alxa — X)) &1 — (w2 + alxa — x5)) &
= a(&2(b) — £1(b)) — (€2(a) — &1(a))]. (3.13)

We want to find b € supp™ (w1 — wg) for which (3.13) is nonnegative.
We make use of the conformal decomposition {&, —& =Y ;" fim;. Since S is a set of complements

we may assume, by Proposition 3.4, that
a € suppt(m) NS Csuppt(m) NS C -+ Csuppt(m) NS

and m;(a) =0fori =0+ 1,0+2,...,m; then supp (m;) NS =0 fori =1,2,... ¢

11



Proposition 3.7. There exists b € (supp™ (71) N'S) Nsupp™ (w1 — w2).

Proof. We have wim < 0, since £ is optimal for wy; and d < & + fim < c. Similarly, we have

—w;fm < 0. Hence

0> (wi —wp)'m =) (wi(d) —wo(B))mi(b) = Y (wi(b) — wa(b)).

bes besuppt(m1)NS

Since wy (a) — wo(a) > 0 in this summation, we must have wi(b) —ws(b) < 0 for some b € supp™ (m1) N
S. O

For b € (supp™ (1) N'S) Nsupp™ (w1 — ws) in Proposition 3.7, we have

l m J4
&2(b) — &1(b) :Z@-+ > Bimi(b) > Zﬂi = &(a) — &i(a),

i=0+1

which shows the nonnegativity of (3.13).

3.5 Proof of L-concavity in cg

We prove the Li-concavity of the function F5C in cg, the latter part of Theorem 1.8 (i). This contains
the latter part of Theorem 1.6 (ii) as a special case.
We denote F' = FSC for simplicity. Li-concavity of F' in c¢g is equivalent to supermodularity of

F(c—cpxs,d) in (cs,cp), which in turn is equivalent to

F(c+ Axa,d) + F(c+ pxp, d) < F(e,d) + F(c+ Axa + pxp. d), (3.14)
F(c+ Axa,d) + F(c— pxs,d) < F(e,d) + F(c+ Axa — pxs,d) (3.15)

for a,b € S with a # b and A\, u € R4, where xg € {0, 1}A denotes the characteristic vector of S C A.
To show (3.14) let &, and &, be optimal solutions for ¢+ Ax, and ¢+ px;. We can establish (3.14)
by constructing vectors £ and { with N¢ = N E = 0 such that

E+E=batby
d<&<e, d<&<cd Ao+ 1o (3.16)

EaNEy<ENESEVESEVE,

If £4(a) < c(a), we can take £ = &, and £ = &, to meet (3.16). If &(b) < c(b), we can take £ = &,
and € = &, to meet (3.16). Otherwise, we have &,(a) > c(a) > &(a) and &, (b) < ¢(b) < &(b), and
therefore a € supp™ (£, — &) and b € supp™ (&, — &). We make use of the conformal decomposition
Ca—E& = Y iy Bimi, where we assume 7;(a) = 1fori =1,2,..., 0 and m;(a) = 0 for ¢ = (+1,042,...,m.
We have m;(b) = 0 for ¢ = 1,2,...,¢ by Proposition 3.1 (ii), since S is a set of complements and
a € supp* (€, — &) and b € supp ™ (§u — &). Then & = & — Y1, fim and § = & + Y1, fym satisfy
(3.16).
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To show (3.15) let &, and &g be optimal solutions for ¢+ A\x, and ¢ — pxs. We can establish (3.15)
by constructing vectors £ and § with N¢ = N 5 = 0 such that

E+E=Cutis,
d<&<e, d<&<c+Axa— pxs, (3.17)

EaNEs <ENESEVE<EVEs.

If ,(a) < c(a), we can take £ = &, and € = &g to meet (3.17). Otherwise, we have &,(a) > c(a) > €s(a),
and therefore a € supp™ (£, — £s). We use the conformal decomposition &, —E&s =Y ;- Bim. Since S

is a set of complements we may assume by Proposition 3.4 that
a €supp’ (m1) NS Csupp™(ma) NS C -+ Csupp™ (mg) N S

and mi(a) = 0 for i = £+ 1,0+ 2,...,m; then supp—(m;) NS = @ for i = 1,2,...,¢. Noting
Zf 18i =&a(a) —Es(a) > &q(a) — c(a ) let k be the smallest integer with Zf 1 Bi > &ala ) — c(a) and
)

define 3’ = [£4(a) — c(a)] — 3212} B Then € = & — Y1) Bimy — B/my, and € = & + Y1) Bimi + B/my
satisfy (3.17), since

g(a) - Z Bi — = C ,

fla) = ¢sa) +Zﬁi +68 = &s(a) +Eula) —cla) < cla) +A—p,
i=1

and, for any b € supp™(m) NS\ {a}, we have

l m
§0) = &O)+[F =3 8= X Bmi(d)] < ) +[8 =8l

= i=l+1 i=k
= ¢(b) + [€s(a) —c(a)] < ¢(b) + [(c(a) — p) —ca)] < c(b) — p
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