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SUMMARY  M-convex functions have various desirable
properties as convexity in discrete optimization. We can find a
global minimum of an M-convex function by a greedy algorithm,
i.e., so-called descent algorithms work for the minimization. In
this paper, we apply a scaling technique to a greedy algorithm
and propose an efficient algorithm for the minimization of an
M-convex function. Computational results are also reported.
key words: matroid, convex function, scaling algorithm, discrete
optimization.

1. Introduction

The concept of convexity for sets and functions plays
a central role in continuous optimization (or nonlinear
programming with continuous variable). It has various
applications in the areas of mathematical economics,
engineering, operations research, etc. [2], [23], [25]. The
importance of convexity relies on the fact that a local
minimum of a convex function is also a global minimum.
Due to this property, we can find a global minimum of
a convex function by iteratively moving in descent di-
rections, i.e., so-called descent algorithms work for the
convex function minimization.

In the area of discrete optimization, on the
other hand, discrete analogues of convexity, or “dis-
crete convexity” for short, have been considered,
with a view to identifying the discrete structure that
guarantees the success of descent methods, so-called
“greedy algorithms.” Examples of discrete convexity

e “discretely-convex functions” by Miller [12] and
“integrally-convex functions” by Favati-Tardella [7]. It
would be natural to expect that discrete convexity
yields a theory of “discrete convex analysis,” which cov-
ers discrete analogues of the fundamental concepts such
as conjugacy, subgradients, duality, and separation the-
orems. Unfortunately, neither “discretely-convex func-
tions” nor “integrally-convex functions” seem to be
fully suitable for such a theory. This suggests that we
must identify a more restrictive class of well-behaved
“discrete convex functions.”
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A clue has been found in the theory of matroids
and submodular functions, which has successfully cap-
tured the combinatorial essence underlying the well-
solved class of combinatorial optimization problems
such as those on graphs and networks (cf. [6], [8], [10]).

The relationship between convex functions and
submodular functions was made clear through the
works of Frank, Fujishige, and Lovész in the eighties.
In particular, Lovész [11] pointed out that a set func-
tion is submodular if and only if the so-called Lovasz
extension of that function is convex.

Independent of the development in the theory of
submodular functions, in the nineties, Dress and Wen-
zel [4], [5] introduced the concept of valuated matroids,
which turned out to provide a nice combinatorial frame-
work to which optimization algorithms for matroids can
be generalized. Variants of greedy algorithms work
for optimizing a matroid valuation [4],[13], and the
weighted matroid intersection algorithm can be ex-
tended to the valuated matroid intersection problem
[14],[15]. The duality theorem was shown by Murota
[14] several years later, and the relationship to discrete
convexity was recognized [16].

The concept of M-convex functions was proposed
by Murota [18],[19] in 1996 as a natural extension of
the concept of valuated matroids. Let V' be a finite set.
A function f : ZY — RU{+o0} is said to be M-convex
if it satisfies

(M-EXCQ) Vx,y € dom f, Yu € supp™(z — y), Jv €
supp~ (z — y) such that

F@) + ) = f(z—xu+x0) + FU+ Xu — X0),

where x,, € {0, 1}V is the characteristic vector of w € V
and

dom f = {z € Z" | f(z) < 400},
supp®(z —y) ={w € V | 2(w) > y(w)},
supp™ (z —y) = {w € V | z(w) <y(w)}.

It is easy to see that B = dom f satisfies the following
property:

(B-EXC) Vz,y € B, Yu € supp™(z — y), Jv €
supp~ (z — y) such that

T— Xut+Xo €B, y+ Xu— Xv € B.



Note that (B-EXC) implies D .y z(v) = > oy y(v)
for any x,y € B. A nonempty set BgZV with (B-
EXCQ) is called an M-convex set.

M-convexity is quite a natural concept appearing
in many situations; linear and separable-convex func-
tions are M-convex, and more general M-convex func-
tions arise from the minimum cost flow problem with
separable-convex cost functions. M-convex functions
have various desirable properties as discrete convexity:
(i) local minimality leads to global minimality for M-
convex functions,

(ii) M-convex functions can be extended to ordinary
convex functions,

(iii) various duality theorems hold.

In particular, the property (i) shows that greedy algo-
rithms (descent algorithms) work for the minimization
of an M-convex function. A theory of “discrete convex
analysis” [19]-[21] has been developed with the use of
M-convex functions.

In this paper, we consider the problem of mini-
mizing an M-convex function. Although an M-convex
function can be minimized by a descent algorithm, it
may require exponential time. A steepest descent algo-
rithmm (see §4), a faster version of a descent algorithm,
terminates in pseudo-polynomial time. The domain
reduction-type polynomial time algorithm of Shioura
[24] has the time complexity O(n*(log L)?), where

n=Vl,

Although the domain reduction-type algorithm has
polynomial time complexity, our numerical experiments
show that it does not run fast in practice.

The objective of this paper is to propose faster
polynomial time algorithms for the minimization of
an M-convex function by using a scaling technique.
Scaling is a fundamental technique used extensively
in polynomial time algorithms for combinatorial opti-
mization problems. Indeed, scaling-based algorithms
achieve better time complexities for the resource allo-
cation problem [9], the minimum cost flow problem [1],
etc.

We propose efficient minimization algorithms for
functions in the class of M-convex functions closed un-
der the scaling operation. Some fundamental classes of
M-convex functions such as separable convex functions
and quadratic M-convex functions are closed under the
scaling operation, although this is not the case with
general M-convex functions. We apply the scaling tech-
nique to a steepest descent algorithm to obtain faster
algorithms.

In order to compare the performance of our new
scaling algorithms to those of the previously proposed
algorithms, we make numerical experiments with ran-
domly generated test problems. It is observed from
numerical results that our new scaling algorithms are
much faster than the previously proposed algorithms
from the viewpoint of both theory and practice.

L = max{[|z — Y|« | 2,y € dom f}.
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2. Scaling of M-convex Functions

For f : ZV — R U {+c}, a positive integer o and a
vector b € ZV, define a function f**: Z¥ — RU{+o0}
by

foia) = flaz +b)  (z€ZY).

This operation is called scaling. Even if f is an M-
convex function, f®? is not necessarily M-convex in
general. We can still identify a number of subclasses
of M-convex functions that are closed under the scaling
operation.

Example 2.1 (Separable convex functions):

For SCV, we define z(S) = > .gz(v). For a fam-
ily of convex functions f; : Z — R indexed by i € V'
and an integer (3, the (separable convex) function f :
ZV — R U {+oc} defined by

flx) = Zfi(:ci) if 2(V) =4,

+00 otherwise

is M-convex.

Since f*t(z) = Y1, fiax; + b;) is also a sep-
arable convex function, the class of separable convex
functions is closed under the scaling operation.

Example 2.2 (Quadratic M-convex functions):
Let A = (a;;) € R"™™ be a symmetric matrix. A
quadratic function f: ZV — R U {+occ} given by

1T Az i 2(V) =0
_ | gxt Az ifx ,
flz) = { +00 otherwise

is M-convex if and only if

Vi, j k1€ V with {i,5} N {k,1} = 0,

Qij + Qg = min{a;; + aji, aq + ajk}

(see [21],[22]). For a quadratic M-convex function f,
the function f®° is written as

Johe) =

N | =

(azx + b)T A(az + b)

i~

= 2T Az + abT Az + %bTAb.

o]

This expression shows that the function f®t is M-
convex. Therefore, the class of quadratic M-convex
functions is closed under the scaling operation.

Example 2.3 (Laminar convex functions):
A nonempty family 7 of subsets of V' is called a laminar
family if it satisfies the following property:

VX,Y €T :XNY =Por XCY or XDY.

Given a laminar family 7, a family of convex functions
fx ' Z — R indexed by X € 7, and an integer (3,
define a function f : ZV — R U {+c0} by
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xX\x X if z(V)= ﬁ,
ry = | 2 et it a)
400 otherwise.

We call a function f of this type a laminar convex func-
tion. We show that laminar convex functions constitute
a class of M-convex functions closed under the scaling
operation (see also [3], [21]).

Without loss of generality, assume V € 7. Other-
wise, we can add V to 7 and put fy(a) =0 (Va € Z).
For X CV, we denote by 7(X) the family of all max-

imal proper subsets of X in 7. For any z € ZY and
X CV, we have

2(X)= > {x(Y)|Y € T(X)}
+> {zw)[vex\ |J Y} (1)

YET(X)

Take any z,y € dom f and u € supp'(z — y). To
prove (M-EXC), it suffices to show that there exists
some v € supp~ (z — y) satisfying

veX, végX, XeT = z(X)>y(X) (2)
and
ugX,veX, XeT = z(X) <y(X). (3)

Let X be the unique minimal set in 7 satisfying u € X
and z(X) < y(X). By the minimality of X, and (1),
there are two cases:

(i) Fv € Xo\Uyer(xy Y 1 2(v) <y(v),

(11) 1X, € T(Xg) : I(Xl) < ’U(Xl)
In case of (i), this v satisfies (2) and (3). In case of (ii),
from (1) follows

(i) Jv € Xs \Uyer(x,) Y :2(v) <y(v), or

(il) X2 € T(X7) : 2(X2) < y(X2).
Repeating this argument, we reach the case (i). There-
fore, a laminar convex function is M-convex.

Moreover,

Foha) =Y fx(am(X) +b(X))

XeT

is a laminar convex function. Therefore the class of
laminar convex functions is closed under the scaling op-
eration.

3. Theorems on the Minimizers of M-convex
Functions

In this section, we show properties of the minimizers of
M-convex functions.

Global minimality of an M-convex function is char-
acterized by local minimality.
Theorem 3.1 ([18],[19]): Let f:ZY — RU{+c0} be
a function with (M-EXC). For z € dom f, f(x) £ f(y)
(Vy € ZV) if and only if f(z) £ f(x — Xu + Xo)
(Vu,v € V). [ |

Any vector in dom f can be easily separated from
some minimizer of f.
Theorem 3.2 ([24]): Let f: ZY — RU {+o0} be a
function with (M-EXC). Assume argmin f & 0.
(i) For x € domf and v € V, let u € V satisty
fla=xutxo) =min f(z—xs+x0)- Set 2’ = T=xu+Xo-

S

Then, there exists z* € argmin f with 2*(u) < 2/(u).
(ii) For z € domf and v € V, let v € V satisty
fla=xutxe) = min fz—xutxe). Set 2’ =z xutxo-
Then, there exists x* € argmin f with z*(v) = 2/(v).
||
Corollary 3.3 ([24]): Let f : Z¥ — R U {+cc} be
an M-convex function. Assume argmin f #+ . Let
x € dom f with z € argmin f, and u,v € V satisfy

fx = Xu + Xo) =Sr;1ér‘1/f(:r—xs+xt)-

Then, there exists 2* € argmin f with z*(u) < z(u)—1,
x*(v) 2 z(v) + 1. |

Let o be a positive integer, and z, € dom f. We
call z, an a-local minimum of f if it satisfies

f(ma) < f(xoc - a(Xu - Xv)) (Vu,v € V)

The following is a “proximity theorem,” showing that a
global minimizer of an M-convex function exists in the
neighborhood of an a-local minimum.

Theorem 3.4: Let f : ZV — R U {+00} be an M-
convex function and « be any positive integer. Suppose
that z, € dom f satisfies f(za) £ f(Za — a(Xu — Xv))
for all u,v € V. Then, there exists some x, € argmin f
such that

[Ta(v) —zu(v)] £ (0 = D)(@=1)  (veV). (4)

Proof. It suffices to show that for any v > inf f
there exists some z,. € dom f satisfying f(z.) < v and

(4).

Let 2, € dom f satisfy f(z.) < v, and suppose
that z. minimizes the value ||z. — x4||1 among all
such vectors. In the following, we fix v € V and
prove 4 (v) — 2.(v) £ (n — 1)(a — 1). The inequality
24 (V) — 2o (v) £ (n—1)(ax — 1) can be shown similarly.

We may assume z,(v) > x.(v). We first prove the
following two claims. Let k = 24(v) — z4(v).

Claim 1: There exist wy, w2, --,wi € V \ {v} and
Yo(= o), Y1, -, Y € dom f such that

Yi =Yi-1— Xo + Xuwy, fWi) < f(yi-1) ((=1,--,k).
[Proof of Claim 1] We show the claim by induction
on i. Suppose y;—1 € dom f. By (M-EXC) applied to
Yi—1, T, and v € supp™ (y;—1 — ), we have some w; €
supp (Y1 — ) Csupp (zq —2.) SV \ {v} such that
f@)+f(Wi1) 2 F(@e =X +X0) +F (G174 X = Xo)-
By the choice of z., we have f(z. + xv — Xw,;) > f(z*)
since ||(z« + Xv — Xw;) — Zall1 < ||T« — Zal]1. Therefore,



fWi) = f(yi-1 — xv + Xw,;) < f(yi-1).  [End of Proof
for Claim 1]

Claim 2: For any w € V' \ {v} with yg(w) > z(w)
and p € [0, yp(w) — x4 (w) — 1], we have

f(@a = (p+1) (X0 — Xw)) < f(#a = pXxe = Xw))-(5)

[Proof of Claim 2] We prove (5) by induction on
u. Put @ = x4 — p(xe — Xw) for p € [0, yr(w) —
Zo(w) — 1], and suppose 2’ € dom f by induction hy-
pothesis. Let j,. (1 £ j. < k) be the largest index
such that w;, = w. Then, y;, (v) = yr(w) > 2'(w)
and supp™ (y;, — 2’) = {v}. (M-EXC) implies that
f(xl) + f(uj*) = f(x/ — Xov + Xw) + f(ij + Xo — Xw)-
By Claim 1, we have f(y;, +Xv— Xw) > f(y;.)- Hence,
(5) follows. [End of Proof for Claim 2]

The a-local minimality of x, implies f(zq—a(xy—
Xw)) 2 f(xq), which, combined with Claim 2, implies
yp(w) — 2o (w) L a—1 for all w € V' \ {v}. Thus,

Ta(v) = 22 (v) = Za(v) = ye(v)

= D> {w(w) - za(w)}

weV\{v}
< (n—1)(a-1),

where the second equality is by (V) = y(V) (Va,y €
dom f). a

4. Minimization Algorithms of an M-convex
Function

In the previous section we gave some theorems on the
minimizers of an M-convex function. Based on these
theorems, we obtain several algorithms for the mini-
mization of an M-convex function. In this section we de-
scribe previous algorithms and propose new algorithms
based on a scaling technique.

4.1 Previous Algorithms

Let f: ZV — RU{+oc} be a function such that dom f
is a nonempty bounded set, and put

L = max{|lz — ylloc | 7.y € dom f}.

We can compute the value L in O(n?log L) time by
O(n?)-time evaluation of the exchange capacity. For
r € B and u,v € V, the exchange capacity associated
with z,v and w is defined as ég(z,v,u) = max{a |
x — alxu — Xo) € B}. The exchange capacity can be
computed in O(log L) time. See [24] for details.

Assume (M-EXC) for f. Then, Theorem 3.1 im-
mediately leads to the following algorithm.
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Algorithm DESCENT

S0: Let x be any vector in dom f.

S1: If f(z) = IItllI‘l/ f(z — xs + x¢) then stop
s,te

[ is a minimizer of f].
S2: Find u,v € V with f(z — xu + x0) < f(2).
S3: Set x:=1x — xu + Xxv. Go to S1. O

This algorithm always terminates since the func-
tion value of x decreases strictly in each iteration. How-
ever, there is no guarantee for the polynomiality of the
number of iterations. The number of iterations is at
most |dom f| £ (L + 1)"~! since the algorithm gener-
ates distinct x in each iteration.

The following is a faster version of Algorithm DE-
SCENT which exploits Corollary 3.3.

Algorithm STEEPEST_DESCENT
S0: Let z be any vector in dom f. Set B := dom f.
S1: If f(z) = rniI‘1/ f(x — xs + x¢) then stop

s,t&

[ is a minimizer of f].
S2: Find u,v € V with z — x, + Xxv € B satisfying

f(l‘ — Xu + Xv)
=min{f(z—xs+xt) | s,t € V,z—xs+xt € B}.

S3:  Set

B=Bn{yez"|
y(u) L z(u) — 1, y(v) =2 z(v) + 1}

and = := x — xy + Xo. GO to S1. O

By Corollary 3.3, the set B always contains a min-
imizer of f. Hence, Algorithm STEEPEST_DESCENT
finds a minimizer of f. To analyze the number of iter-
ations, we consider the value

u;/{gleag y(w) — min y(w)}.

This value is bounded by nL and decreases at least by
two in each iteration. Therefore, STEEPEST_DESCENT
terminates in O(nL) iterations. Each iteration can
be done in O(n?) time. Therefore, Algorithm STEEP-
EST_DESCENT finds a minimizer of f in O(n3L) time,
i.e., STEEPEST_DESCENT is a pseudo-polynomial time
algorithm. In particular, if dom f C {0, 1}V then the
number of iterations is O(n).

We propose the following modified version of Algo-
rithm STEEPEST_DESCENT by exploiting Theorem 3.2

(i).
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Algorithm MODIFIED_STEEPEST_DESCENT

S0: Let z be any vector indom f. Set B := dom f.

S1: Choose u € V such that  — x, + x» € B for
some v € V' \ {v}. If there is no such u then
stop [z is a minimizer of f].

S2: For u, find v € V with x — xu + xo € B
satisfying

(@ —Xu+ xv) = min{ f(z — xu + x¢) |
teV, z—xu+xt € B}.

S3: Set B:==Bn{yeZ" |yv)=z(v)+1} and
T =2 — Xu + Xo- GO to S1. |

Although the number of iterations of Algorithm
MODIFIED_STEEPEST_DESCENT is equal to that of Al-
gorithm STEEPEST_DESCENT, each iteration of MODI-
FIED_STEEPEST_DESCENT can be done in O(n) time,
while each iteration of STEEPEST_DESCENT can be
done in O(n?) time. MODIFIED_STEEPEST_DESCENT
is also a pseudo-polynomial time algorithm.

It is shown in [24] that the minimization of an M-
convex function can be done in polynomial time by the
domain reduction method explained below. Given a
bounded M-convex set B, we define the set Ng C B as
follows. For w € V, define N

up(w) = maxy(w),

Ip(w) = {,’%iﬁ y(w), max

ty(w) = | (1= Dtnw) + Tunw)|.

) = | 2ow) + (1= Dup(w)]

Then, Np is defined as
Np ={y € B|lp(w) < y(w) < up(w) (Vw € V)}.
Theorem 4.1 ([24]): Np is a (nonempty) M-convex
set. [ |
The next algorithm maintains a set B Cdom f
which is an M-convex set containing a minimizer of f.

It reduces B iteratively by exploiting Corollary 3.3 and
finally finds a minimizer.

Algorithm DOMAIN_REDUCTION
S0: Set B := dom f.
S1: Find a vector z € Np.
S2: If f(x) = Htlll"l/ f(x — xs + x¢) then stop
s,te
[ is a minimizer of f].
S3: Find u,v € V with z — xy + xv € B satisfying
f(I*Xu‘*'Xv) :min{f(x*Xs‘*'Xt) |
s,t €V, z—xs+x: € B}.
S4:  Set
B:=Bn{yeZ"|
y(u) < 2(u) =1, y(v) 2 =(v) +1}.
Go to S1. |

Theorem 4.2 ([24]): If a vector in dom f and the
value L are given, Algorithm DOMAIN_REDUCTION
finds a minimizer of f in O(n*(log L)?) time. [ |

4.2 Scaling Algorithms

In this section, we propose efficient algorithms with a
scaling technique. We apply a scaling technique to Al-
gorithm STEEPEST_DESCENT to obtain a faster algo-
rithm. To the end of this section we assume that f is
an M-convex function which is closed under the scaling
operation.

Algorithm SCALING_STEEPEST_DESCENT
S0: Put o := 2/leL/4) B .= dom f. Let xaq
be any vector in dom f.
S1: |a-scaling phase]Define f : ZV — R U {400}
by
f(y) _ { f(x2a+ay) ifw2a+ay S Bv
400 if 294 +ay & B.
Compute a minimizer y, of f by applying Al-
gorithm STEEPEST_DESCENT.
Set xo = Taq + QY.
S2: If a =1 then stop [z, is a minimizer of f].
S3: Put
B:=Bn{yeZ" |zo(w) — (n—1)(a—1)
S y(w) < zo(w)+ (n—1)(a—1) (Vw € V)}
and «a := a/2. Go to SI. O

We analyze the time complexity of Algorithm
SCALING_STEEPEST_DESCENT for a function closed un-
der the scaling operation. The number of scaling phases
is [log(L/4n)]. Since the number of iterations in each
scaling phase is (4na x n)/a, each scaling phase termi-
nates in O((4na x n)/a x n?) = O(n*) time. We can
compute the value L in O(n?log L) time. Here, we have
the following theorem.

Theorem 4.3: Suppose that f : Z¥ — R U {+o0}
satisfies (M-EXC) and is closed under the scaling op-
eration. If a vector in dom f is given, Algorithm
SCALING_STEEPEST_DESCENT finds a minimizer of f
in O(n*log(L/n)) T time. |

Algorithm SCALING_STEEPEST_DESCENT above
can be improved further by using MODIFIED_STEEP-
EST_DESCENT in place of STEEPEST_DESCENT in each
scaling phase. We refer to the algorithm resulting
from this modification as SCALING_MODIFIED_STEEP-
EST_DESCENT. Each scaling phase of SCALING_MOD-
IFIED_STEEPEST_DESCENT terminates in O(n?) time,
and therefore, its overall time complexity for finding
a minimizer of f is O(n3log(L/n)). Thus the replace-
ment of STEEPEST_DESCENT by MODIFIED_STEEPEST-
_DESCENT results in an O(n) improvement upon SCAL-
ING_STEEPEST_DESCENT.

Theorem 4.4: Suppose that f : Z¥ — R U {+oc0}
satisfies (M-EXC) and is closed under the scaling oper-
ation. If a vector in dom f is given, Algorithm SCAL-
ING_MODIFIED_STEEPEST_DESCENT finds a minimizer
of fin O(n3log(L/n)) time. ||

TO(n* max{log(L/n),1}), to be more precise. Similarly
for Theorem 4.4.




5. Numerical Experiments

We here mainly compare the performance of our new
algorithms SCALING_STEEPEST_DESCENT (SSD) and
SCALING_MODIFIED_STEEPEST_DESCENT (SMSD) to
those of STEEPEST_DESCENT (SD) and DOMAIN_RE-
DUCTION (DR). We observe from numerical experi-
ments that our algorithms are much faster than the
previous algorithms. Section 5.1 briefly explains test
problems used in numerical experiments and our im-
plementation. Section 5.2 compares new scaling algo-
rithms to the previously proposed algorithms.

5.1 Test Problems and Implementation

As test problems we consider the minimization of a
quadratic laminar convex function of the following
form:

minimize Y {axz(X)® + bxa(X) + cx}
XeT
n
subject to Zm(z) =L,
i=1
x; 20, integer,i=1,...,n.

For each n and L fixed (dimension of the variable z
and the sum of x(i), respectively), we generate ten
test problems with randomly chosen real variables 0 <
ax, bx, ¢x £1000 (X € T) and laminar families 7.
The C language function random() is used to generate
these pseudo-random numbers. We measure the exe-
cution time and present average execution times of ten
generated test problems for each size. The two main
parameters n and L have a strong influence on the exe-
cution time. We make experiments with test problems
of various sizes by changing n and L.

In our implementation, we tailored DR for the
minimization of a laminar convex function, in which
the following algorithm is used to find a vector x in
Np.

Algorithm FIND_VECTOR_IN_Np
S1: For each w € V, compute lz(w) and u'g(w).
S2: Forw=1,2,---,n, put

)
if Z z(i) + ug(w) + Z I'5(1) £ L,
x(w) = ufi n mwtl
L= a(i)— > )
=1 i=w+1
otherwise.

O

Algorithm FIND_VECTOR_IN_Np finds a vector in
Npg in O(n) time. The time complexity of the special-
ized DR is O(n*log L) while those of DR mentioned in
Section 4 is O(n*(log L)?).
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Also, in our implementations of SD, DR, SSD
and SMSD, it takes O(n) time to evaluate the func-
tion value. Hence, the execution time in our numerical
experiments is O(n) times larger than the theoretical
time complexity.

Each of SD, DR, SSD and SMSD is written in the
C language, compiled under a personal computer with
the CPU Pentium III 450MHz and 256 MB of memory
under Vine Linux (a Linux distribution based on Red
Hat Linux) V1.1 using the compiler pgee 2.95.2 with
the option -mcpu=pentiumpro -march=pentiumpro -
09 -funroll-loops.

5.2 Computational Results

Our numerical results are summarized in Figures 1 and
2. Figure 1 shows the relationship between the com-
putation time T and the dimension n for the case of
L = 50000. In all the four algorithms the relationship
is linear in log T and logn, which implies T' = O(nP)
for some p. Our results show the following:

Algorithm | SD DR SSD SMSD
Time T n216  3.80  3.70 n2-96

Figure 2 shows the relationship between the com-
putation time 7" and the size of the effective domain L
for the case of n = 100. L is given in log scale whereas
time T is on linear scale in this graph. It is verified that
T = O(log L) in SSD and SMSD, T' = O((log L)?) in
DR and T'= O(L) in SD.

Fig. 1  The execution time in the case L = 50000.

Fig. 2 The execution time in the case n = 100.

The table below shows the standard deviations of
execution times in the case of L = 50000 and n = 100,
which is the case of the largest problems in our numer-
ical experiments.
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Algorithm SD DR SSD
Stand. Dev. | 2.770 10.25 0.9075

SMSD
0.2357

By numerical experiments with randomly gener-
ated test problems, we can conclude that our scaling
algorithms are faster than the previously proposed al-
gorithms. In particular, Algorithm SMSD is the fastest
algorithm among algorithms we considered.

6. Conclusion

Although our scaling algorithms run in polynomial time
only for a restricted class of M-convex functions, our
scaling approach can be polished up to a polynomial
time algorithm applicable to general M-convex func-
tions by Tamura [26].

The authors thank Yoshitsugu Yamamoto for a
stimulating comment.

References

[1] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin, Network Flows
— Theory, Algorithms, and Applications, Prentice Hall, New
Jersey, 1993.

[2] M.S. Bazaraa, H.D. Sherali, and C.M. Shetty, Nonlinear Pro-
gramming: Theory and Algorithm (Second Edition), John
Wiley and Sons, New York, 1993.

[3] V. Danilov, G. Koshevoy, and K. Murota, “Discrete convex-
ity and equilibria in economies with indivisible goods and
money,” Math. Social Sciences, vol.41, pp.251 273, 2001.

[4] A.W.M. Dress and W. Wenzel, “Valuated matroid: a new
look at the greedy algorithm,” Appl. Math. Lett., vol.3,
pp-33-35, 1990.

[5] A.W.M. Dress and W. Wenzel, “Valuated matroids,” Adv.
Math., vol.93, pp.214-250, 1992.

[6] U. Faigle, “Matroids in combinatorial optimization,” in Com-
binatorial Geometries, ed. N. White, pp.161-210, Cambridge
University Press, London, 1987.

[7] P. Favati and F. Tardella, “Convexity in nonlinear integer
programming,” Ricerca Operativa, vol.53, pp.3—44, 1990.

[8] S. Fujishige, Submodular Functions and Optimization, An-
nals of Discrete Math., vol.47, North-Holland, Amsterdam,
1991.

[9] D.S. Hochbaum, “Lower and upper bounds for the allocation
problem and other nonlinear optimization problems,” Math.
Oper. Res., vol.19, pp.390—409, 1994.

[10] E.L. Lawler, Combinatorial Optimization: Networks and
Matroids, Holt, Rinehart and Winston, New York, 1976.
[11] L. Lovész, “Submodular functions and convexity,” in Math-
ematical Programming — The State of the Art, eds.
A. Bachem, M. Grotschel, and B. Korte, pp.235-257,

Springer, Berlin, 1983.

[12] B.L. Miller, “On minimizing nonseparable functions defined
on the integers with an investory application,” SIAM J. Appl.
Math., vol.21, pp.166-185, 1971.

[13] K. Murota, “Finding optimal minors of valuated bima-
troids,” Appl. Math. Lett., vol.8, pp.37-42, 1995.

[14] K. Murota, “Valuated matroid intersection, I: optimality cri-
teria,” SIAM J. Discrete Math., vol.9, pp.545-561, 1996.
[15] K. Murota, “Valuated matroid intersection, II: algorithms,”

SIAM J. Discrete Math., vol.9, pp.562-576, 1996.

[16] K. Murota, “Fenchel-type duality for matroid valuations,”

Math. Programming, vol.82, pp.357-375, 1998.

[17] K. Murota, “Submodular flow problem with a nonseparable
cost function,” Combinatorica, vol.19, pp.87-109, 1999.

[18] K. Murota, “Convexity and Steinitz’s exchange property,”
Adv. Math., vol.124, pp.272-311, 1996.

[19] K. Murota, “Discrete convex analysis,” Math. Program-
ming, vol.83, pp.313-371, 1998.

[20] K. Murota, “Discrete convex analysis — Exposition on con-
jugacy and duality,” in Graph Theory and Combinatorial
Biology, eds. L. Lovész et al., pp.253-278, The Janos Bolyai
Mathematical Society, 1999.

[21] K. Murota, Discrete Convex Analysis—An Introduction,
Kyoritsu Publishing Co., Tokyo, 2001. [In Japanese]

[22] K. Murota and A. Shioura, “Quadratic M-convex and L-
convex functions,” RIMS Preprint No. 1326, Kyoto Univer-
sity, 2001.

[23] R.T. Rockafellar, Convex Analysis, Princeton University
Press, Princeton, 1970.

[24] A. Shioura, “Minimization of an M-convex function,” Dis-
crete Appl. Math., vol.84, pp.215-220, 1998.

[25] J. Stoer and C. Witzgall, Convexity and Optimization in
Finite Dimension I, Springer-Verlag, Berlin, 1970.

[26] A. Tamura, “Coordinatewise domain scaling algorithm for
M-convex function minimization,” RIMS Preprint No. 1324,
Kyoto University, 2001.

Satoko Moriguchi received Bache-
lor and Master Degrees of Engineering
from Sophia University in 1999 and 2001,
respectively. She is presently studying to-
wards Doctor Degree of Science in De-
partment of Mathematical and Comput-
ing Sciences, Tokyo Institute of Technol-
ogy. She is interested in combinatorial op-
timization.

Kazuo Murota received Bachelor,
Master and Doctor Degrees of Engineer-
ing from the University of Tokyo in
1978, 1980 and 1983, respectively. He
is presently a professor at Department
of Mathematical Informatics, Graduate
School of Information Science and Tech-
nology, University of Tokyo. His research
interest centers around discrete mathe-
matical methods in engineering.

Akiyoshi Shioura received Bache-
lor, Master and Doctor Degrees of Sci-
ence from Tokyo Institute of Technology
in 1993, 1995 and 1998, respectively. He is
presently an Associate Professor at Grad-
uate School of Information Sciences, To-
hoku University. His major research in-
terests are in mathematical programming
and combinatorial optimization.



