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Abstract:  The tree-shaped facility location problem aims to locate a subtree
on the center of a given tree network. This paper deals with four types of the
problems in which the centrality for a subtree is measured by the eccentricity or the
distance-sum, and a subtree may contain partial edges or not. We investigate the
relationship between these problems and knapsack-type problems. The relation
leads to a linear-time algorithm for a tree-shaped facility location problem which
is known to be polynomial-time solvable, or an approximation algorithm for the
one which is NP-hard.

1 Introduction

The problem of locating facilities on a network has been attracting many researchers
from theoretical and practical points of view. The mathematical structure of this prob-
lem varies according to the type of the underlying network, the criterion of location, the
shape and the number of facilities to locate, and so on. Consequently, there are many
kinds of network location problems (see [9, 3]).

In this paper, we deal with the following network location problem: locate a tree-
shaped facility on the center of a given tree network. This problem is referred to as the
tree-shaped facility location problem. To measure the centrality of a facility, we use the
distance between the facility and the farthest vertex from it, or the sum of the distances
between the facility and all vertices. These two criteria are called as the “eccentricity”
and the “distance-sum,” respectively. The tree-shaped facility location problem is ini-
tiated by Minieka [6], who provided several properties and developed polynomial-time
algorithms for locating a facility with partial edges. In case that a facility is allowed to
contain only full edges, Hakimi, Schmeichel, and Labbé [3] presented a simple greedy
algorithm for the problem which employs the eccentricity, and induced the NP-hardness
of the problem with the distance-sum criterion by reducing the partition problem.

The main aim of this paper is to investigate the relationship between tree-shaped
facility location problems and knapsack-type problems. Using the relation, we present
a linear-time algorithm for a location problem which is known to be polynomial-time
solvable, or an approximation algorithm for the one which is NP-hard.
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The 0-1 knapsack problem maximizes the sum of values subject to a single linear
inequality constraint. The bottleneck knapsack problem, which may be called the mini-
max knapsack problem, minimizes the maximum of values, instead of the sum of values.
We observe that the 0-1 and the bottleneck knapsack problems are related to the tree-
shaped facility location problems with the eccentricity and the distance-sum criteria,
respectively. Although the 0-1 knapsack problem is NP-hard, the bottleneck knapsack
problem can be solved in linear time. Associated with partial edges, we additionally in-
troduce the continuous relaxation of each knapsack problem. These relaxation problems
are also linear-time solvable. We derive the linear-time solvability of the location prob-
lems from that of the corresponding knapsack-type ones. It is the nice mathematical
structure as well as the shape of the underlying network that provides the linear-time
solvability of a tree-shaped facility location problem.

This paper is organized as follows: Section 2 introduces definitions and notation, and
describes four types of tree-shaped facility location problems. Section 3 explains the 0-
1 knapsack problem and its variations. Section 4 discusses the relationship between
tree-shaped facility location problems and knapsack-type ones.

2 Preliminaries

2.1 Tree Networks

Let T'= (V,E) be a tree network with a vertex set V and an edge set E. In
this paper, we assume that 7 is drawn in a plane, where each edge (u,v) € E has a
length of [(u,v), and regard T as a point set. For two points p and ¢ on one edge,
a partial edge [p,q] stands for the set of points lying between p and ¢, including
boundary points p,q. When the points p,q respectively lie on the both end vertices
of an edge, the partial edge [p,q| is called a full edge. We denote the length of a partial
edge [p,q| by l(p,q).

A subset S of points in T is called a continuous subgraph of T or a subgraph in
short, if S is a closed set. Let V/(S) denote the set of points in S corresponding
to vertices of V. Any subgraph S is decomposed into several partial edges such that
the intersection of any pair of distinct partial edges is empty or a point in V(5). We
denote such a set of partial edges by FE(S). Note that E(T) indicates the set of all
full edges in 7. A subgraph S is discrete if E(S) contains only full edges and points
corresponding to vertices. We call any connected subgraph S a subtree. In contrast
with S (C T), the subgraph T\S is constituted by the points not in S and its
boundary.

In a tree T, the distance between two points p,q € T, denoted by d(p,q), is the
length of the unique path connecting p and ¢ in 7T. The distance between a point p
and a subtree S is given by d(p,S) = min{d(p,q) : ¢ € S}. The size of a subtree S
is defined as size(S) = Y {l(u,v) : [u,v] € E(S)}.

A rooted tree, denoted by T,, is a tree T which has a distinguished point r
called a root. When one endpoint p of an partial edge [p,q] is on the path between
r and the other endpoint ¢, then we call the point ¢ as a child of p in T,, and
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Figure 1: a subtree 7,(q)

Figure 2: An example of the subgraph S,.(x). Given a tree and a vector « such that
x(r,a) = 0,z(a,b) = 1.0,z(a,c) = 0.5,..., the subgraph S,(x) is the one drawn by
thick lines and black vertices.

denote this relation by p — ¢. Especially, given a subtree S, if it holds that p = ¢
for all r € S, then we write p 5, g. In the same way, if any two distinct full edges
[u,v], [v,w] € E(T) satisfy u - v and v = w, then [v,w] is also called a child of
[u,v] in T, ie. [u,v] = [v,w]. When a point has no child other than itself in the
rooted tree T,, we call the point a leaf of T,. Given two points p,q € T, we define
the subtree T,(q) as {z € T': ¢ is on the path between p and =z } (see Figure 1).

For a point r € V(T') and a vector & with 0 < z(u,v) <1 foreach [u,v] € E(T),
we define the subgraph S,(x) of T as the point set

{r} UU{{q € [u,v] : d(u,q) < 1(u,v) z(u,v)}: [u,v] € E(T), z(u,v) >0, u-— v}

Figure 2 shows the example of the subgraph S,(x). The subgraph S,(x) is a subtree
if and only if it contains the path between r and wu for any [u,v] € E(T) with
z(u,v) >0 and u > v.



Lemma 2.1. Let r be a point in V(T'), and a be any vector with 0 < z(u,v) <1
for all [u,v] € E(T). Then, the subgraph S,(x) is connected if and only if @ satisfies

VY [u, ], [v,w] € BE(T), if x(v,w) > 0 and [u,v] = [v,w], then x(u,v) = 1.

2.2 The Tree-Shaped Facility Location Problem

Given a tree network 7 = (V) F) and a nonnegative number L, the tree-shaped
facility location problem is formulated as follows:

Minimize  f(.5)
subject to  size(S) < L,
S is a subtree of T

The objective function f(S) is the measure of “centrality” for a subtree S and is
given by the eccentricity,

ecc(S) = max{d(w, S) : w e V(T')},

or the distance-sum,

dis(S) = Y {d(w, S) : w € V(T)}.
The eccentricity ecc(S) has the following properties.

Lemma 2.2. Suppose S is a subtree of T with S # T. Then,
eco(S) = max{max{d(w,p) : w € V(T,(9))} : [p.q] € B(T'\ ), p = g}

Proof.  When a partial edge [u,v] € F(T\ S) satisfies u € S, we have d(w,S) =
d(w,u) for any point w € V(T,(v)). The relation

V(T)\V(S) = U{V(Tu(v)) u,v] € E(T\S), ue S}
implies

ecc(S) = max{d(w,S):we V(T)\V(S)}
= max{max{d(w,u) :w € V(T,(v))}: [u,v] € E(T\S), ue S}. (2.1)
Furthermore, for any partial edge [p,¢] € E(T\ S) with p 5 ¢ and p ¢ S, there
exists at least one partial edge [u,v] € E(T'\ S) with v € S and [p,q] € E(T,(v)).

Hence we have max{d(w,u) : w € V(T,,(v))} > max{d(w,p) : w € V(T,(¢q))}, which,
together with (2.1), establishes the lemma. i

Corollary 2.3. When a subtree S contains the point r € V(T) and S # T,
ecc(S) = max{l(p,v) + max{d(w,v) : w € V(T,(v))} : [p,v] € E(T'\ S), p = v}.
With respect to the distance-sum dis(S), we can prove the following easily.
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Lemma 2.4. Let S be a subtree and |[p,q] be a partial edge in E(T \ S) with
p € S. Then, it holds that

dis($) — dis(S U [p. ) = [V(T,(@))] (p. 0).

Proof. By addition of [p,q] to S, the distance between the subtree and each
point in V(7},(g)) becomes shorter, and the one between the subtree and each point in

V(T)\ V(T,(¢q)) remains unchanged. i
Corollary 2.5. For any subtree S containing the point r € V(T),
dis(r) — dis(S) = S{IV(T, ()| U(p. q) « [p.a] € E(S), p = g}

We call optimal solutions of the tree-shaped facility location problems a tree center
and a tree median when the objective functions are the eccentricity and the distance-sum,
respectively. By the combination of objectives and types of subtrees such as discrete
and continuous, we have four kinds of problems: discrete tree center, continuous tree
center, discrete tree median, and continuous tree median problems. Without loss of
generality, we assume that L < size(T). If L = 0 then the tree-shaped facility
location is equivalent to the point location, and optimal solutions of the above four
problems are nothing but a vertex center, absolute center, vertex median, and absolute
median, respectively (see [9]).

3 The 0-1 Knapsack Problem and its Variations

This section explains the 0-1 knapsack problem and three variations of it. These
knapsack-type problems are related to tree-shaped facility location problems.

Suppose we are given a set of items N = {1,2,---,n} where the i-th item has
a positive profit p; and a positive weight w;, and a positive bound W. The 0-1
knapsack problem, described as

Maximize Y {piz;:i € N}
KP | subject to > {wz;:i € N} <W,
LL'ZE{O, 1} (ZGN),

is one of the most popular integer programming problems and known to be NP-hard [5].
Without loss of generality, assume that max{w;:i € N} <W < >{w;:i € N}. We
introduce the total order < on N such that

Vi,jeN, i<j<=p/w <p;/wj, orp;/w; =p;/w;and i < j.
The following lemma provides an approximate solution of the KP.

Lemma 3.1. [5] Suppose that x* is an optimal solution, and z',x? € {0,1}" are
given by



where s € N is the item with
S{w;:i €N, i =s} <W<>{w;:i €N, i s} (3.1)

Then, both &' and x? are feasible solutions satisfying

max{>_{p;z; 11 € N}, Y{pix}:i € N}} > %Z{pix,’{ i€ N}

We call the item s with the condition (3.1) the critical item, which can be found by
the algorithm FIND_CRITICAL_ITEM, as shown below.

algorithm FIND_CRITICAL_ITEM
begin
sum :=0; [ :== N;
while |/| > 1 do begin
select the [(|] + 1)/2]-th smallest item k of I with respect to the total order <;
sumy =Y Aw; i1 €1, i k};
if sum + sum; < W then
sum = sum + sumy; I :={i € :i = k};

else
I:={iel:i=k};
endif ;
end ;
let s be a unique item in 7;

end .

Since the selection of the [(|/| + 1)/2]-th smallest item of I requires only O(|I|) time
[1], FIND_CRITICAL_ITEM finds the critical item in O(n) time.

The continuous relaxation of the KP is said to be the continuous knapsack problem
(CKP). It is well-known that the CKP is solvable in O(n) time [5]. An optimal solution
is given by

1 (i = s),
=4 W—=>{w;:1€ N, i>s})/ws (i=Ss),
0 (i <),

where s is the critical item.
We now exchange the criterion for the choice of items. The following problem is
called the bottleneck knapsack problem.

Minimize  max{p;x; : i € N}
BKP | subject to > {wx;:1€ N} > W,
;€ {0,1} (i € N).

In the BKP, assume that 0 < W < Y {w; : i € N}. Note that the 0-1 valued vector

x* given by
ot = { L (pi <o),
0 (pi > pt)

7
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is optimal for the BKP, where ¢t € N is an item with
SH{witi €N, p <py <W <3X{w; i € N, p; < pi}.

Hence, the following lemma holds.

*

Lemma 3.2. There exists an optimal solution a* satisfying the condition

Vi,j € N, if p; > p; and x; =1, then zj = 1. (3.2)

Finding the item ¢ in the similar way as the algorithm FIND_CRITICAL_ITEM, we can
obtain an optimal solution satisfying the condition (3.2) in O(n) time.

At last, we consider the continuous bottleneck knapsack problem (CBKP). In addition
to p; and w;, suppose that the i-th item has a fixed profit of ¢; (> 0). The CBKP
is formulated as follows:

Minimize  max{p;z; +¢; :1 € N, z; > 0}
CBKP | subject to > {w;x;: 1€ N} > W,
0<z <1 (i € N).

We also assume that 0 < W < Y {w; : i € N}. For each ¢ € N, let us define the
function tw; : R — R as

w; (z>pi+q),
twi(2) = wilz —q)/pi (@ < 2 < pi + @),
0 (Z < ql),

and tw(z) = > {tw;(z) : ¢ € N}. Here R denotes a set of real numbers. It is clear
that the function tw : R — R is the nondecreasing and piecewise linear, in which
breaking points are given by p; + ¢, and ¢; for all ¢ € N. The function tw helps us
to find an optimal solution of the CBKP.

Lemma 3.3. Let Ip = min{y € R : tw(y) > W}. An optimal solution of the CBKP
is uniquely determined by a* such that

1 (pi + i < Ip).
;=3 (p—aq)/pi (6 <lp<pi+aq), (3.3)
0 (g > lp).

The number [p can be found by the algorithm FIND_LEAST_PROFIT, which is a mod-
ification of FIND_CRITICAL_ITEM. In the algorithm, the next lemma is necessary for
finding Ip efficiently.

Lemma 3.4. For any two numbers y,z with y < z, it holds that
tw(z) —tw(y) = (z—y)X{wi/pi:i€ N, y<qg <zorg<y<p+q}

— Y{wi(gs —y)/pi:ieN, y<q <z}
— Y{wi(z—pi—q)/pi:it €N, y<pi+¢ <z}



Set a; = ¢;, py; = pi +q; foreach i € N, and N = {n+1,---,2n}. In the
description of the algorithm, we use a total order < on N U N’ such that

Vi,je NUN', i<j<=a; <aj ora =a;andi<j.

algorithm FIND_LEAST_PROFIT;
begin
sum = 0; lwr = 0; rate := Y {w;/p;:i € N}; := NUN/;
while |/| > 1 do begin
select the | (|7] + 1)/2]-th smallest index k of I with respect to the total order <;
rate; :=rate — Y {w;/p; :i € INN, i > k};
sumy = (ap — lwr)rate; — > {w;(a; — lwr)/p; i € INN, i <k}
—>A{wi—n(ax — a;)/pi—n i € INN', i 2 k};
if sum + sum; < W then
sum := sum + sumyq; lwr = a;
rate :=rate — S {w; n/pin:t €INN, i =k}; [:={i€l:i>k};

else
rate :=ratey; I :={i €l :i=<k};
endif ;
end ;
lp == lwr + (W — sum)/rate;
end .

Since FIND_LEAST_PROFIT also runs in O(n) time, Lemma 3.3 implies the linear-time
solvability of the CBKP.

4 Relations between Tree-Shaped Facility Locations and Knapsack Prob-
lems

4.1 The Discrete Tree Center Problem

This subsection shows that the discrete tree center problem,

Minimize  ecc(S)
DTCP | subject to size(S) < L,
S is a discrete subtree of T,

can be reduced to the bottleneck knapsack problem. Let « denote a vertex center in
T.

Lemma 4.1. There exists a discrete tree center containing .

Proof.  Suppose that a discrete tree center S does not contain the vertex center
a. We denote by wu the nearest point in V(S) from «. For any w € V(7T),
if we V(T,(u)) then d(w,u) < d(w,a) < ecc(a), otherwise d(w,u) = d(w,S) <
ecc(S) < ecc(a). Thus, ecc(u) < ecc(a), and wu is also a vertex center. Since
ecc(S) = ecc(u) = ecc(a), the vertex center «a is also a discrete tree center. [



In view of Lemma 4.1, it suffices to consider discrete subtrees containing «a. Set
a(u,v) = max{d(w,u) : w € V(T,(v))} foreach [u,v] € E(T) with u - v.

Lemma 4.2. Let S be any discrete subtree containing «. If S # T then

ecc(S) = max{a(u,v) : [u,v] € E(T'\ S)}.

Proof. The claim immediately follows from Corollary 2.3. |
By using a 0-1 valued vector y, we can reformulate the DTCP to

Minimize — max{a(u,v) (1 —y(u,v)) : [u,v] € E(T)}
subject to > {l(u,v) y(u,v) : [u,v] € E(T)} < L
Sa(y) is connected,
y(u,v) € {0,1} ([u,v] € E(T)).

Y

DTCP1

Putting L' = > {l(u,v): [u,v] € E(T)} — L and « =1 —y, we obtain

Minimize — max{a(u,v) z(u,v) : [u,v] € E(T)}

subject to Y {l(u,v) z(u,v) : [u,v] € E(T)} > L, (4.1)
bTeP2 Sa(1 — x) is connected, (4.2)
x(u,v) € {0,1} ([u,v] € E(T)). (4.3)

Lemma 4.3. There exists an optimal solution of the DTCP2 with the condition
V [u,v], w, 2] € E(T), if a(u,v)> a(w,z) and z(u,v) =1 then z(w,z)=1. (4.4)

Proof. Let x* be an optimal solution of the DTCP2 and A = max{a(u,v) :
[u,v] € E(T), x*(u,v) = 1}. We define the vector @ € {0, 1}¥®) such that for each
[u,v] € E(T), if a(u,v) < A then #(u,v) = 1, otherwise Z(u,v) = 0. Clearly,
the condition (4.4) holds with @. We obtain a(u,v) > a(v,w) + l(u,v) > a(v,w) for
any two full edges [u,v], [v,w] € E(T) with [u,v] = [v,w], which, together with the
condition (4.4) and Lemma 2.1, provides that S,(1 — ) is connected. It is obvious

that & satisfies (4.1) and has the same objective value as @*. Therefore, & is also

optimal for the DTCP2. | |
The proof of the previous lemma yields the next corollary.

Corollary 4.4. If x € {0,1}F®) satisfies the condition (4.4), then it also satisfies the
condition (4.2).

Thus, any optimal solution of

Minimize — max{a(u,v) z(u,v) : [u,v] € E(T)}

DTCPS| bject to  (4.1), (4.3), (4.4)

is also optimal for the DTCP2. By removing the condition (4.4) from the DTCP3, we
obtain a bottleneck knapsack problem. For such a problem, we stated in Section 3 that
an optimal solution with the condition (4.4) can be found in O(|E(T")|) = O(]V]) time.
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The selection of a vertex center o can be done in O(|V|) time [8]. By the recursive
equation

alu, v) = {

we can compute a(u,v) for all [u,v] € E(T) in O(]V]) time. The following theorem
consequently holds.

l(u,v) (v is a leaf of Tp,),
[(u,v) + max{a(v,w) : [v,w] € E(T), [u,v] = [v,w]} (otherwise),

Theorem 4.5. The discrete tree center problem is reducible to the bottleneck knapsack
problem in O(|V]) time, and solvable in O(|V|) time.

4.2 The Continuous Tree Center Problem

In this subsection we provide the reducibility of the continuous tree center problem,

Minimize  ecc(.S)
CTCP | subject to  size(S) < L,

S is a continuous subtree of T,

to the continuous bottleneck knapsack problem. We define [ as the absolute center of

T.
Lemma 4.6. [6] The continuous tree center contains the absolute center [3.

Therefore, it is sufficient to consider continuous subtrees containing (. From now on,
let us assume that [ is a point in V(7). If not, put a new vertex on it and construct
a new tree. Addition of a new vertex makes no matter with this problem.

For each full edge [u,v] € E(T) with u L, let b(u,v) = max{d(w,v) : w €
V(Ts(v))}. Corollary 2.3 can be rewritten as follows.

Lemma 4.7. Suppose that S is a continuous subtree containing 3 with S # T.
Then, it holds that

ecc(S) = max{I(p,v) + b(u.v) : [p.v] € B(T'\ S), p L v, [p,v] C [u,v] € E(T)}.
Using a vector y indexed by FE(T), we can restate the CTCP as

Minimize — max{l(u,v) (1 — y(u,v)) + b(u,v) : [u,v] € E(T), y(u,v) < 1}
subject to > {l(u,v) y(u,v) : [u,v] € E(T)} < L,

Ss(y) is connected,

0<ylu,v) <1 ([u,v] € E(T)),

CTCP1

which is equivalent to

Minimize — max{l(u,v) z(u,v) + b(u,v) : [u,v] € E(T), z(u,v) > 0}

subject to > {l(u,v) z(u,v) : [u,v] € E(T)} > L', (4.5)
CTeP? Sp(1 — @) is connected, (4.6)
0<z(u,v) <1 ([u,v] € E(T)). (4.7)

Recall that L' = > {l(u,v) : [u,v] € E(T)} — L. Elimination of the condition (4.6)
from the CTCP2 yields a continuous bottleneck knapsack problem, referred to as the
CTCP3.
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Lemma 4.8. Let x* be the optimal solution of the CTCP3. Then, Sz(1 — x*) is a
continuous tree center.

Proof. From Lemma 3.3, there exists a real number [p such that

1 (l(u,v) + b(u,v) < lp),
x*(u,v) =< (Ip—blu,v))/l(u,v) (blu,v) <lIp < l(u,v)+ b(u,v)),
0 (b(u,v) > Ip).

For any two edges [u,v],[v,w]| € E(T) with [u,v] 4, [v,w], we have b(u,v) >

b(v,w) + l(v,w), and consequently z*(u,v) =0 if 2*(v,w) < 1. It follows from
Lemma 2.1 that x* satisfies the condition (4.6). i

It takes O(]V]) time to find the optimal solution for the CTCP3 and the absolute
center 3 [4]. Using the recursive equation

0 (v is a leaf of T}),
max{l(v,w) + b(v,w) : [v,w] € E(T), [u,v] 2, [v,w]} ( otherwise ),

b(u, v) = {

we can compute b(u,v) for all [u,v] € E(T) in O(|V|) time.

Theorem 4.9. The continuous tree center problem is reducible to the continuous bot-
tleneck knapsack problem in O(|V]) time, and solvable in O(|V|) time.

4.3 The Discrete Tree Median Problem

The discrete tree median problem,

Minimize  dis(5)
DTMP | subject to size(S) < L,
S is a discrete subtree of T,

which is known to be NP-hard [3], can be solved by a modification of the pseudo-
polynomial-time algorithm by Rabinovitch and Tamir for another kind of tree-shaped
facility location problem [7]. Their algorithm is based on the dynamic programming,
and uses a technique called “centroid decomposition” to decrease the time complexity.

Theorem 4.10. The discrete tree median problem is solvable in O(L?*|V|log|V|)
time.

We show that the DTMP is related to the 0-1 knapsack problem, and present an
approximation algorithm for the DTMP, which is a modified version of that for the 0-1
knapsack problem.

For each point r € V(T'), we deal with the subproblem

Minimize  dis(5)
DTMP(r) | subject to size(S) < L,
S is a discrete subtree of T, r € S.
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Solving the DTMP(r) for all r € V(T), we can obtain a discrete tree median. Con-
nected with each full edge [u,v] € E(T) with u = v, define

c(u,v) = |V(T,(v))]. (4.8)
From Corollary 2.5, the DTMP(r) is rewritten by using a 0-1 vector x as

Maximize > {c(u,v) l(u,v) x(u,v) : [u,v] € E(T)}

subject to E{l(u v) z(u,v) : [u,v] € BE(T)} < L, (4.9)
DTMP1(r) J Sy(x) is connected, (4.10)
z(u,v) € {0,1} ([u,v] € E(T)). (4.11)

Except for the constraint (4.10), this problem is a 0-1 knapsack problem. Unfortunately,
there does not always exist an optimal solution of this 0-1 knapsack problem which is
also optimal for the DTMP1(r). Nevertheless, an approximation algorithm of the 0-1
knapsack problem also applies for the DTMP1(r) with a slight modification.

Note that if d(r,v) > L for a full edge [u,v] € F(T) with u - v, then any
feasible subtree S of the DTMP(r) does not contain [u,v|. Thus, the following 0-1
knapsack problem arises from the DTMP1(r):

Maximize > {c(u,v) l(u,v) x(u,v) : [u,v] € E(T)}
subject to  (4.9), (4.11),
z(u,v) =0 ([u,v] € E(T)\ E.(T)),

DTMP2(r)

where

E.(T) = {[u,v] € E(T) : u > v, d(r,v) < L}.
When > {l(u,v) : [u,v] € E.(T)} < L,

L ([u,v] € E(T)),
0 (otherwise)

z(u,v) = {

is optimal for both the DTMP1(r) and the DTMP2(r). We now assume that > {l(u,v) :
[u,v] € E.(T)} > L. Suppose we are given a total order < on FE(T') satisfying

V [u, v, [w, 2] € E(T), c(u,v) < c(w, z) = [u,v] < [w, z]. (4.12)
Let [p,q] € E.(T) be the full edge with

Y{l(u,v) : [u,v] € E(T), [u,v] = [pgl} < L <3X{l(w,v) : [u,v] € E(T), [u,v] E(A[L ,Q])},
13
and z', 2 € {0,1}"™) be the vectors given by

1 _ 1 ([U,U} € ET(T>7 [U,U] - [ 7Q])7
r(uw) = { 0 (otherwise),
22(u,v) — 1 ([u,v] is on the path connecting r and [p, q]),
"7 ] 0 (otherwise).
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Since two full edges |u,v], [v,w| € E(T) with [u,v] — [v,w] satisfy c(u,v) > c(v,w),
Lemma 2.1 implies that the condition (4.10) holds with respect to @'. The vector x?
also feasible for the DTMP1(r) because [p,q] € E.(T). We denote by x* and @
optimal solutions of the DTMP1(r) and the DTMP2(r), respectively. It follows from
Corollary 2.5, Lemma 3.1 and the inequality

S {e(,v) U, 0) ;) : [i,0] € B(T)} > S{e(u, 0) Uu,v) (0, v) : [u,0] € B(T)}
that
dis(r) — min{dis(S,(z")), dis(S,(=*))}
= max{>{c(u,v) l(u,v) z*(u,v) : [u,v] € E(T)},
S{c(u,v) l(u,v) %(u,v) : [u,v] € E(T)}}

> (1/2) Sfelw,v) U, v) (0, v) : [u,0] € B(T)}

= (1/2){dis(r) — dis(S,(x"))}.
That is, we have

dis(S) < {dis(S,(x")) + dis(r)}/2,
where S is one of two discrete subtrees S,(z') and S.(x?) with the smaller
distance-sum.
As mentioned in Section 3, the algorithm FIND_CRITICAL_ITEM finds the full edge

p,q] € E.(T) with the condition (4.13) in O(|E,.(T")]) = O(]V]) time. The recursive
equation

o, v) = { 1 (v is a leaf of T}),
0 1+ {e(v,w) s v, w] € E(T), [u,v] 5 [v,w]}  (otherwise),

provides the values c(u,v) for all [u,v] € E(T) in O(]V|) time. Hence, we can find
an approximate solution of the DTMP1(r) in linear time.

Finding an approximate solution of the DTMP1(r) for each r € V(T'), we obtain
the following theorem.

Theorem 4.11. Suppose that S* is a discrete tree median and that v is any point
in V(S*). Then, we can find a discrete subtree S’ with

dis(S") < {dis(S*) + dis(v)}/2
in O(|V]?) time.

4.4 The Continuous Tree Median Problem

This subsection discusses that the continuous tree median problem,

Minimize  dis(.5)
CTMP | subject to size(S) < L,
S is a continuous subtree of T,

is reducible to the continuous knapsack problem. We denote by ~ an absolute median
which is also a vertex median. It is known that such a point ~ necessarily exists [2].
The correctness of the algorithm by Minieka [6] implies the next lemma.
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Lemma 4.12. There exists a continuous tree median containing -y.

Thus, we have only to consider continuous subtrees containing . The CTMP can be
stated as

Maximize > {c(u,v) l(u,v) x(u,v) : [u,v] € E(T)}

subject to Y- {l(u,v) z(u,v) : [u,v] € E(T)} < L, (4.14)
CIMPL S, () is connected, (4.15)
0<z(u,v) <1 ([u,v] € E(T)). (4.16)

where each c(u,v) is defined by (4.8) when 7 = ~. If the condition (4.15) is ignored
in the CTMP1, we obtain a continuous knapsack problem. From Section 3, an optimal
solution of this continuous knapsack problem is given by

1 ([u, v] > [p, q]),
z*(u,v) = ¢ (L= X{l(u,v) : [u,v] € E(T), [u,v] > [p,q]})/Up,q) ([u,v] = [p,q]).
0 ([u, o] <'[p, q]),

where < stands for a total order on F(7T) satisfying the condition (4.12), and [p, q|

is the full edge with
> A{l(w,v) : [u,v] € E(T), [u,v] = [p,q} < L <3X{l(u,v) : [u,v] € B(T), [u,v] = [p, q]}-
Since a* satisfies (4.15), x* is also optimal for the CTMP1.

We can obtain in O(|V]) time an optimal solution of the above continuous knapsack
problem, an absolute median ~ [8], and the values c(u,v), respectively. Therefore,
we derive the next theorem.

Theorem 4.13. The continuous tree median problem is reducible in O(|V]) time to
the continuous knapsack problem, and solvable in O(|V|) time.

5 Conclusion

We have discussed four types of tree-shaped facility location problems, and induced
the relationship with knapsack-type problems. The discrete tree center, continuous tree
center, and continuous tree median problems are reducible in linear time to the bot-
tleneck knapsack, continuous bottleneck knapsack, and continuous knapsack problems,
respectively. Linear-time algorithms are presented for the above three location problems
by using the linear-time solvability of the corresponding knapsack-type problems. The
discrete tree median problem, which is known to be NP-hard, can be related to the 0-1
knapsack problem, and this relation gives an approximation algorithm for the discrete
tree median problem.

In the discussion so far, we have used the length [(u,v) of each edge (u,v) € F to
define both the size of a subtree and the distance. Instead of this, suppose that we are
additionally given a positive weight w(u,v) of each edge (u,v) € E, and newly define
the size of a subtree S as size(S) = > {w(u,v) : [u,v] € E(S)}. In this situation,
our arguement still holds with the discrete and continuous tree center problems. With
respect to the tree median problems, however, the structure of the problems becomes
more complicated, and the NP-hardness can be proved for not only the discrete version
but also the continuous one.
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