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Minimization of L-/M-convex Functions

 fundamental problems in discrete convex analysis
* many examples & applications
e various algorithmic approaches

— Greedy, Scaling, Continuous Relaxation, etc.
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Overview of Discrete Convex Analysis

Discrete Convex Analysis [Murota 1996]
--- theoretical framework for discrete o:timization problems
C discrete analogue of . generalization of Theory of o
Convex Analysis Matroid/Submodular Function
_ in continuous optimization ) in discrete opitmization )

* key concept: two discrete convexity: L-convexity & M-convexity
— generalization of Submodular Set Function & Matroid

* various nice properties
— local optimal €=>»global optimal
— duality theorem, separation theorem, conjugacy relation

* set/function are discrete convex =2 problem is tractable



History of
Discrete Convex Analysis

1935: Matroid Whitney
1965: Polymatroid, Submodular Function Edmonds
1983: relation between Submodularity and Convexity
Lovasz, Frank, Fujishige

1992: Valuated Matroid Dress, Wenzel
1996: Discrete Convex Analysis, L-/M-convexity = Murota
1996-2000: variants of L-/M-convexity

Fujishige, Murota, Shioura



Applications

Combinatorial Optimization

— matching, min-cost flow, shortest path, min-cost tension
Math economics / Game theory

— allocation of indivisible goods, stable marriage
Operations research

— inventory system, queueing, resource allocation
Discrete structures

— finite metric space
Algebra

— polynomial matrix, tropical geometry
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Definition of LB-convex Fn

e L5--L-natural, L=Lattice
« Def: g:Z™ - R U {40} is L*-convex (Fujishige-Murota 2000)
€= [discrete mid-point convexity]

gp) +g(@) =z g ([? ) tg ({? ) (Vp,q € Z7)

€= integrally convex + submodular (Favati-Tardella 1990)

gp)t+9(q@ =gpveg +glprgq) (Vp,q€Z)
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Examples of Li-convex Fn

univariate convex @:Z > R €= p(t— 1)+ @(t+1) = 2¢(t)
separable-convex fn
submodular set fn €=» L8-conv fn with dom g = {0,1}"

4 -1

quadratic fn g(p) = p' Ap is LB-convex 3 -2
L -2 3 -1
€« ClijSO(l:F]), Z]CLUZO 1 1 5.

Range: g(p) = max{py, ps, .., Pn} — mMin{py, 3, ..., Pn}

min-cost tension problem
9g() = X190 () + 2 ;¥ij(pi — ;)
(@i, Y;j: univariate conv fn)
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Definition of M*-convex Function

M-convex fn: a variant of M-convex fn

Def: f:Z" - R U {40} is M*-convex €=
Vx,y € Z™",Vi:x(i) > y(i):
)+ =fx—x)+f+x), or

(i)Fj:x() <yDst.fC+fON) = f(x—xi+x;)+ O +xi—x))

)
-/

i <

(Murota-Shioura99)
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Examples of M"-convex Functions

* Univariateconvex :Z > R €= p(t—1)+ p(t+1) = 2¢(t)
e Separable convex fn on polymatroid:

For integral polymatroid P € Z% and univariate convex ¢;

f() =3, oi(x(D) if x€P
* Matroid rank function [Fujishige05]
f(X) = max{|Y| | Y:independent set,Y S X} is M*-concave
* Weighted rank function [Shioura09] (w = 0)
f(X) = max{w(Y)| Y:independent set,Y € X} is M"-concave
e Gross substitutes utility in math economics/game theory
€= M°-concave fn on {0,1}" [Fujishige-Yang03]
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Relationship of L-/M-convex Fns

fiZ" - R U {400}

ﬂ\/l“-co nv fn co nvex-extensi@

fns
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Our Problems

 Minimization of L" -convex function

e Minimization of M"-convex function
— special case:
0 =(0,...,0) is unique minimal vector

indom f={x|f(x) < +oo}

(€=>» dom f is integral polymatroid)

A
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Optimality Criterion
for Minimization Problems

16



17

Optimality Criterion: General Case

Desirable property of “discrete convex” fn:
x: global opt €=» x: local opt w.r.t. some neighborhood N (x)
@ univariate convex fn A

e .

Prop: t,: global opt €=>
local opt w.r.t N(t,) =t, +{0,+1} ‘ o
...Q'. o.:..
®. @
. (“._g: ” . .O°..

&® n-variate “discrete convex” fn . R
* |ocal opt =» global opt? t,

— NOT for convex-extensible fn
* which neighborhood?
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Optimality Criterion: L"-convex Function

Thm:
p.. global opt €=>localoptinp, + g (g € {0,1}")

i : Murota98, 03
Local optimality check: (Murota )

* need to check 0(2™") vectors? --- No!

< <
* can be reduced to
submoduar set fn min --- poly time P+
> p2(Y) = g(o. £ xv) e—® o

is submodular set fn

» p, is local opt
€ p,(Y)takesminatY = ¢ b P
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Optimality Criterion: M -convex Function

Thm:

X, global opt

€-> localoptin  x, + x; —x; (Vi,j), x. %y (Vi)
x, +(0,+1,0,0,—1,0) x, +(0,£1,0,0,0,0)

(Murota96)

Local optimality check:
« 0(n?) vectors =» poly time




Greedy Algorithm
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Greedy Algorithm: General Case

* Greedy Algorithm = Steepest Descent Local Search
* “Global opt=Local opt”=» Greedy works

N(xo)  N(xy)

Repeat:

* findlocal miny € N(x)
e setx:=y

Stop if: x is local opt

N(x1) N(x3)

* Greedy terminates in finite # of iters. (can be exponential)
* (pseudo)-poly. iteration?
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Greedy Algorithm: L° -convex Function

L*-convex fn:  global opt €=>»local opt w.r.t. N(p) = p + {0,1}"
=>» Greedy works with N (p)

Thm: py: initial sol., p,: “nearest” global opt
=> # of iter < 2||p. — pol|

(Kolmogorov-Shioura09)

Key Lemma: in each iteration,
“positive gap” max{p, (i) —p(i) | p.(i) —p (i) > 0} decreases, or
“negative gap” min{p, (i) — p(i)| p.(i) —p(i) < 0} increases

A
positive gap

negative gap




23

Greedy Algorithm: M?-convex Function

M" -convex fn:

global opt €=> local opt w.r.t. N(x) = x + {; — Xj»+ Xir—Xj}
=>» Greedy works with N (x)

Thm: x,:initial sol., x,: “nearest” global opt
= # of iter < ||x, — xp|l4

(Murota03)

Minimizer Cut Thm:

x+ x; — x; € N(x): local opt

=>3x,: global opt s.t. .‘\ X
x,. (i) > x(), x.(j) <x()

(Shioura98)
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Greedy Algorithm for Special Case

Special Case: 0 is uniqgue minimal in dom f = {x|f (x) < 400}

A

Initial vector: y = (0, ..., 0)

Repeat:

e findi € argmin{f(y + x;)|i € N}
*sety:=y X

Stop if: f(y + x;) = f(y) (Vi € N) ”i—x -

Minimizer Cut Thm 2:
(i) i minimizes f(y + x;) = 3x,:opt.s.t. x,. (i) > y(i)
(i) f(¥) < fy + x;) (Vi) =2 Tx,:opt.s.t. X x,(0) < X v(@)




Scaling and Proximity
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Scaling and Proximity: General Case

Scaling f,, of f: Z"™ - R U {40}
(o € Z,: scaling parameter)
= restriction of f to aZ"

foraZ™ > RU {+00}, fa(x) — f(X)

“Proximity Thm”:
global minimizer @ exists
in a neighborhood of

1%

scaled (local) minimizer @ o

=» efficient algorithm

@ univariate convexfn |Prop: |@—@|=a-1

@ n-variate “discrete convex” fn
e || @—@®]|| is bounded? How large?
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Scaling and Proximity: L" -convex Function

Thm: Vp,: scaled local minimizer, Ap,: global minimizer

st P — Pallo = (n—1)(a—1)
(lwata-Shigeno03)

Prop: Va: g, isL*-convexfn

=>» scaled (local) minimizer can be computed efficiently
=>» efficient scaling algorithm

Step 0: a: =sufficiently large integer

Step 1: find minimizer x, of g, in a neighborhood of x,,
Step 2: if &« = 1, then stop (x is global opt)

Step 3:seta := a/2; gotoStep 1
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Scaling and Proximity: M"-convex Function

Thm: Vx,: scaled local minimizer, 3x,: global minimizer
s.t. |[xs —Xglloo < (M —1D)(a—1)

(Moriguchi-Murota-Shioura02)

But: f, is NOT M"-convex

=>» difficult to compute a scaled local minimizer
=>»simple scaling algo does not work
=>»apply scaling approach in a different way
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Scaling Algorithm for Special Case

Special Case: (0, ..., 0) is unique minimal vector in dom f

apply scaling technique to Greedy Algo A _,

Update of x using step size a:

¢ if f(x+ay;) <o, setx :=x+ ay;

¢ otherwise, set x := x + [ x; with
maximum S under f(x + By;) < o

Prop: x,: output of scaled greedy algo,

dx,: global minimizer

st f|xe — xg]leo <@ —1

=>» efficient algorithm
¢ can be extended to general M"-convex fn



Continuous Relaxation
and Proximity

30



Continuous Relaxation and Proximity:

General Case
Assumption: convex fn f: R" —» R U {+oo}
with f(x) = f(x) (Vx € Z™) is given
“Proximity Thm”: fa f
int. minimizer @ exists
in a neighborhood of real minimizer @

=» efficient algorithm

@ univariate convex fn

Prop: |‘_.|<1 - l ] ]

@® n-variate “discrete convex” fn
+ || @—@®]|| is bounded? How large?



Continuous L*-convex Function

Assumption: continuous L*-convex fn §: R™ = R U {400}
with g(p) = g(p) (Vp € Z") is given
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Def: convex fn g: R™ - R U {40} is continuous L*-convex
€~ §:R" > RU {+0o0} is submodular

G0, P1) »Pn) = g(1 — Do» ++»Pn — Do)

(Murota-Shioura00,04)

Prop:
e restriction of cont. L®-conv. fn on Z™ =» discrete L*-conv.
« Vdiscrete L°-conv. fn g, 3 cont. L*-conv. fn f

s.t. f(p) =g() (Vp €Z")




Continuous Relaxation and Proximity: *
L°-convex Function

Assumption: continuous L*-convex fn §: R™ = R U {400}
with g(p) = g(p) (Vp € Z") is given

Thm: Vpg: real minimizer, Ap,: integral minimizer
s.t. 1P« = Prllo = —1

(Moriguchi-Tsuchimura09)

if pr can be computed efficiently (e.g., quadratic g)
=>» efficient algorithm for int. minimizer



Continuous M®convex Function

Assumption: continuous M*-convex fn f: R™ — R U {+0c0}
with f(x) = f(x) (Vx € ZM) is given
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Def: convex fn f: R"™ - R U {400} is continuous M"-convex €=
Vx,y € Z", Vi:x(i) > y(i),3A1, € R;:
(i) fCI+fO)=2fx—Ax)+f+Ax) (VAE[0,4]), or
(i) Fj: x(G) < y(j) s.t.

FEY+fO) 2 f(x—xi+x;)+fO+xi—x) (VA€[0,4])

(Murota-Shioura00,04)

Prop: Vdiscrete M®-conv. fn g, 3 cont. M*-conv. fn f

s.t. f(x)=g(kx) (Vx € Z")

X restriction of cont. M®-conv. fn on Z" is NOT discrete M°-conv.



Continuous Relaxation and Proximity:
M"-convex Function

Assumption: continuous M*-convex fn f: R™ — R U {+0c0}
with f(x) = f(x) (Vx € ZM) is given

Thm: Vxp: real minimizer, 3x,: integral minimizer
s.t.||x — xRl SN —1

2> ||x. — x|l < n(n—1) (Moriguchi-Shioura-Tsuchimural1l)

Special case: separable convex fn on polymatroid:
f() =30, pi(x(D) if x € P

Thm: Vxp: real minimizer, 3x,: integral minimizer
s.t. ||x, — xgrll1 £ 2(n—1)

if xp can be computed efficiently (e.g., quadratic f)
=» efficient algorithm for int. minimizer
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Minimization of Sum of
Two M%-convex Fns

e Minimization of Sum of two M"-convex fns fi, f,: Z™ - R U {+ o0}
— sum of two M"-convex fns is NOT M -convex
— contains Polymatroid constrained problem:

Minimize f;(x) sub.to x €P
) Minimize  f;(x) + f5(%)
where f,(x) =0 (ifx €P), = +oco (otherwise)

— generalization of polymatroid intersection problem

* poly.-time solvable
— polymatroid intersection algorithms can be extended
— use new techniques & analysis
(Murota96,99,lwata-Shigeno03,lwata-Moriguchi-Murota05)



Minimization of Sum of
Many M°-convex Fns

* Minimization of Sum of more than two M"-convex fns
fir s ft " = R U {400}
— contains Polymatroid constrained problem:
Minimize ;-”z_llfj(x) sub.to x € P
— generalization of three polymatroid intersection problem
* NP-hard

* (1-1/e)-approximation (for maximization version)
for monotone f4, ..., fin—1 & polymatroid const. (Shioura09)
— continuous relaxation + pipage rounding (Calinescu et al. 07)

— Key Property: convex closure of M*-convex fn can be computed
in poly-time =»cont. relaxation in poly-time

38
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Convex Closure of M*-convex Fn

convex closure f: R™ - R U {+0} of f: Z" - R U {+0c0}
- point-wise maximal convex fn satisfying f(y) < f(y) (Vy € Z™)

f) =max{p" x +a|p ER"a ER,p'y +a < f(y)(Vy € Z")}

Define g(p) = min{f (y) —p"y|y € Z"}
> f(x) = max{p"x + g(p) | p € R™}

Prop: (i) restriction of g on Z" is L*-concave
(i) if f is integer-valued
= max{p’x + g(p) | p € R"} has integral opt
=» reduced to L°-concave fn maximization
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M°* -concave Function Maximization
with Knapsack Constraints

* Maximization of M?-concave fn f: Z" - R U {—o0}
under knapsack constraints chx <b(=1,..,m)

— NP-hard

* polynomial-time approximation scheme (Shioural1)
— continuous relaxation + simple rounding
— near integrality of continuous opt. solution

— Key Property: convex closure of M"-convex fn can be
computed in poly-time =»cont. relaxation in poly-time



