## Minimization Algorithms for Discrete Convex Functions

Akiyoshi Shioura (Tohoku University)

## Minimization of L-/M-convex Functions

- fundamental problems in discrete convex analysis
- many examples & applications
- various algorithmic approaches
  - Greedy, Scaling, Continuous Relaxation, etc.

### **Outline of Talk**

- Overview of Discrete Convex Analysis
- Definitions of L-/M-convex Functions
- Algorithms for Unconstrained Minimization
  - Greedy
  - Scaling
  - Continuous Relaxation
- Algorithms for More Difficult Problems

### **Outline of Talk**

- Overview of Discrete Convex Analysis
- Definitions of L-/M-convex Functions
- Algorithms for Unconstrained Minimization
  - Greedy
  - Scaling
  - Continuous Relaxation
- Algorithms for More Difficult Problems

## **Overview of Discrete Convex Analysis**

Discrete Convex Analysis [Murota 1996]

--- theoretical framework for discrete optimization problems

discrete analogue of

Convex Analysis
in continuous optimization

generalization of Theory of Matroid/Submodular Function in discrete opitmization

- key concept: two discrete convexity: L-convexity & M-convexity
  - generalization of Submodular Set Function & Matroid
- various nice properties
  - local optimal
     →global optimal
  - duality theorem, separation theorem, conjugacy relation
- set/function are discrete convex → problem is tractable

## History of Discrete Convex Analysis

1935: Matroid Whitney

1965: Polymatroid, Submodular Function Edmonds

1983: relation between Submodularity and Convexity

Lovász, Frank, Fujishige

1992: Valuated Matroid Dress, Wenzel

1996: Discrete Convex Analysis, L-/M-convexity Murota

1996-2000: variants of L-/M-convexity

Fujishige, Murota, Shioura

## **Applications**

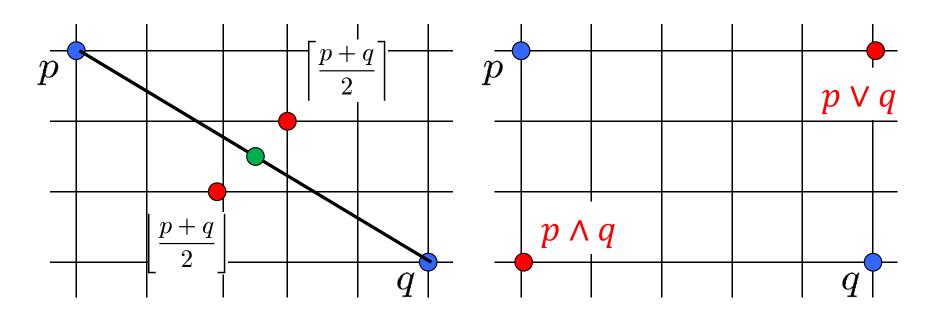
- Combinatorial Optimization
  - matching, min-cost flow, shortest path, min-cost tension
- Math economics / Game theory
  - allocation of indivisible goods, stable marriage
- Operations research
  - inventory system, queueing, resource allocation
- Discrete structures
  - finite metric space
- Algebra
  - polynomial matrix, tropical geometry

### **Outline of Talk**

- Overview of Discrete Convex Analysis
- Definitions of L-/M-convex Functions
- Algorithms for Unconstrained Minimization
  - Greedy
  - Scaling
  - Continuous Relaxation
- Algorithms for More Difficult Problems

## Definition of L4-convex Fn

- Lattice
- Def:  $g: \mathbb{Z}^n \to \mathbb{R} \cup \{+\infty\}$  is L<sup>\(\beta\)</sup>-convex (Fujishige-Murota 2000)
- **←→** integrally convex + submodular (Favati-Tardella 1990)  $g(p) + g(q) \ge g(p \lor q) + g(p \land q) \quad (\forall p, q \in \mathbb{Z}^n)$



## Examples of L4-convex Fn

- univariate convex  $\varphi: \mathbb{Z} \to \mathbb{R} \quad \longleftarrow \quad \varphi(t-1) + \varphi(t+1) \ge 2\varphi(t)$
- separable-convex fn
- submodular set fn  $\leftarrow \rightarrow$  L\(\beta\)-conv fn with dom  $g = \{0,1\}^n$
- Range:  $g(p) = \max\{p_1, p_2, ..., p_n\} \min\{p_1, p_2, ..., p_n\}$
- min-cost tension problem

$$g(p) = \sum_{i=1}^{n} \varphi_i (p_i) + \sum_{i,j} \psi_{ij} (p_i - p_j)$$
$$(\varphi_i, \psi_{ij}: \text{univariate conv fn})$$

## Definition of M<sup>4</sup>-convex Function

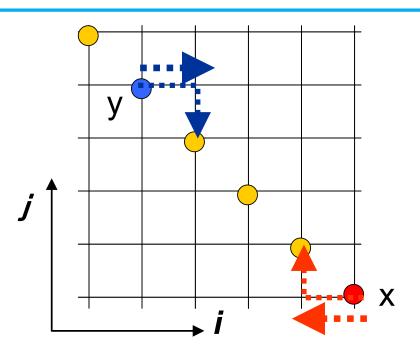
M<sup>4</sup>-convex fn: a variant of M-convex fn

**Def**:  $f: \mathbb{Z}^n \to \mathbb{R} \cup \{+\infty\}$  is  $M^{\natural}$ -convex  $\longleftarrow$ 

 $\forall x, y \in \mathbb{Z}^n, \forall i: x(i) > y(i):$ 

(i) 
$$f(\mathbf{x}) + f(\mathbf{y}) \ge f(\mathbf{x} - \chi_i) + f(\mathbf{y} + \chi_i)$$
, or

(ii)
$$\exists j: x(j) < y(j) \text{ s.t. } f(\mathbf{x}) + f(\mathbf{y}) \ge f(\mathbf{x} - \chi_i + \chi_j) + f(\mathbf{y} + \chi_i - \chi_j)$$



(Murota-Shioura99)

## **Examples of M<sup>4</sup>-convex Functions**

- Univariate convex  $\varphi: \mathbb{Z} \to \mathbb{R} \quad \longleftarrow \quad \varphi(t-1) + \varphi(t+1) \ge 2\varphi(t)$
- Separable convex fn on polymatroid:

For integral polymatroid  $P \subseteq \mathbb{Z}_+^n$  and univariate convex  $\varphi_i$ 

$$f(x) = \sum_{i=1}^{n} \varphi_i(x(i))$$
 if  $x \in P$ 

Matroid rank function [Fujishige05]

$$f(X) = \max\{|Y| \mid Y : \text{independent set}, Y \subseteq X\} \text{ is } M^{\natural}\text{-concave}$$

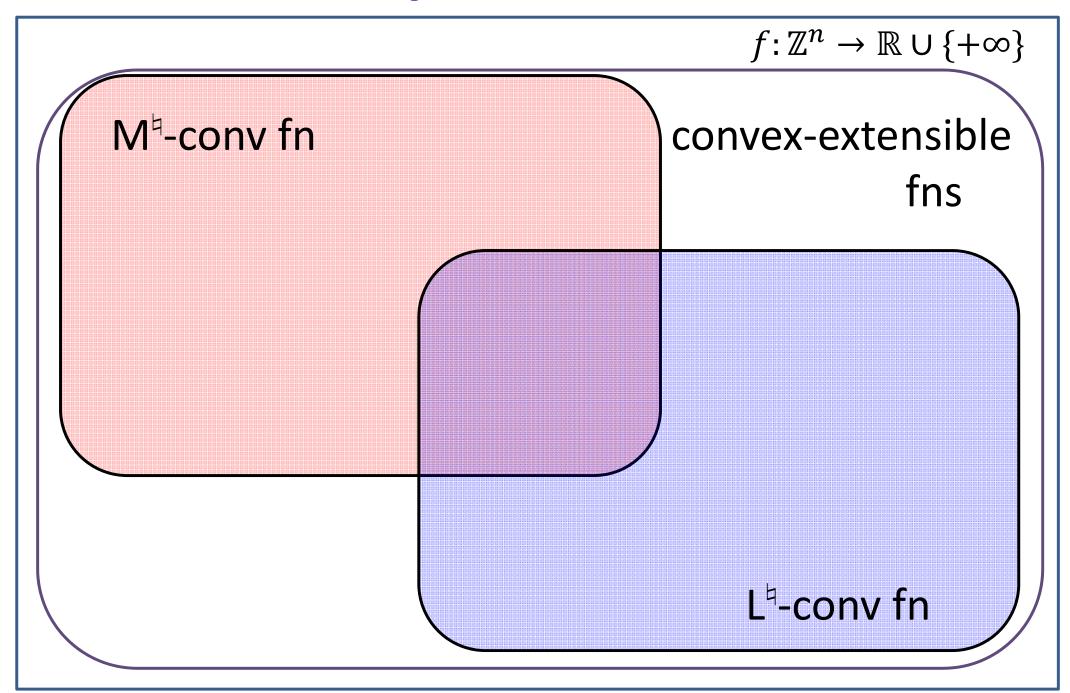
• Weighted rank function [Shioura09] ( $w \ge 0$ )

$$f(X) = \max\{w(Y) | Y : \text{ independent set, } Y \subseteq X\} \text{ is } M^{\natural}\text{-concave}$$

Gross substitutes utility in math economics/game theory

$$\leftarrow \rightarrow M^{\natural}$$
-concave fn on  $\{0,1\}^n$  [Fujishige-Yang03]

## Relationship of L-/M-convex Fns



### **Outline of Talk**

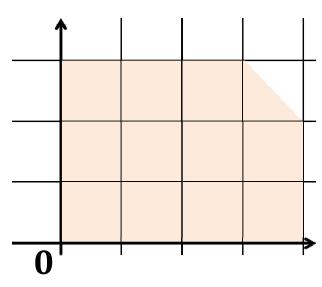
- Overview of Discrete Convex Analysis
- Definitions of L-/M-convex Functions
- Algorithms for Unconstrained Minimization
  - Greedy
  - Scaling
  - Continuous Relaxation
- Algorithms for More Difficult Problems

### **Our Problems**

- Minimization of L<sup>1</sup>-convex function
- Minimization of M<sup>4</sup>-convex function
  - special case:
  - $\mathbf{0} = (0, ..., 0)$  is unique minimal vector

in dom 
$$f = \{x | f(x) < +\infty\}$$

 $(\longleftarrow \rightarrow \text{dom } f \text{ is integral polymatroid})$ 



# Optimality Criterion for Minimization Problems

## **Optimality Criterion: General Case**

Desirable property of "discrete convex" fn:

x: global opt  $\leftarrow \rightarrow x$ : local opt w.r.t. some neighborhood N(x)

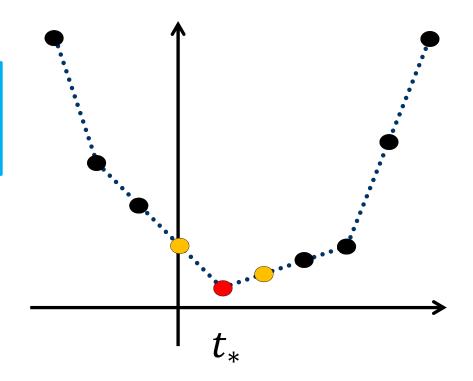
univariate convex fn

**Prop**:  $t_*$ : global opt  $\leftarrow \rightarrow$ 

local opt w.r.t  $N(t_*) = t_* + \{0, \pm 1\}$ 



- local opt 
   global opt?
  - NOT for convex-extensible fn
- which neighborhood?



## Optimality Criterion: L<sup>1</sup>-convex Function

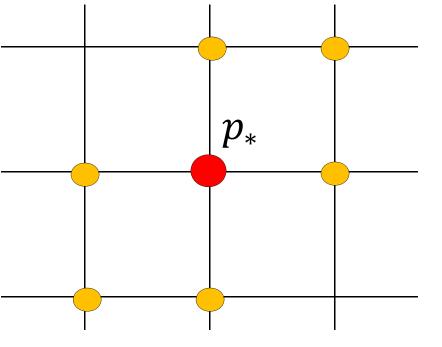
#### Thm:

 $p_*$ : global opt  $\longleftarrow$  local opt in  $p_* \pm q \ (q \in \{0,1\}^n)$ 

Local optimality check:

(Murota98, 03)

- need to check  $O(2^n)$  vectors? --- No!
- can be reduced to submoduar set fn min --- poly time
  - $\rho_{\pm}(Y) = g(p_* \pm \chi_Y)$ is submodular set fn
  - $p_*$  is local opt  $p_*$  is local opt  $p_*$   $p_+(Y)$  takes min at  $Y=\emptyset$



## Optimality Criterion: M<sup>1</sup>-convex Function

#### Thm:

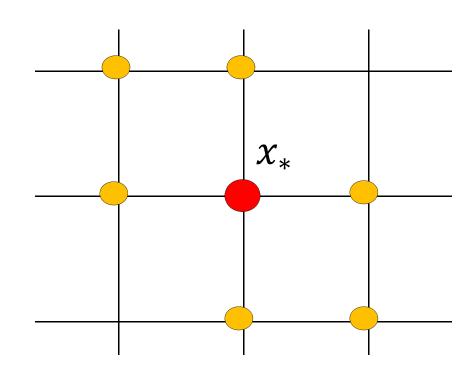
 $x_*$ : global opt

**←** → local opt in 
$$x_* + \chi_i - \chi_j$$
 ( $\forall i, j$ ),  $x_* \pm \chi_i$  ( $\forall i$ )  $x_* + (0, +1, 0, 0, -1, 0)$   $x_* + (0, \pm 1, 0, 0, 0, 0)$ 

(Murota96)

#### Local optimality check:

•  $O(n^2)$  vectors  $\rightarrow$  poly time



## **Greedy Algorithm**

## **Greedy Algorithm: General Case**

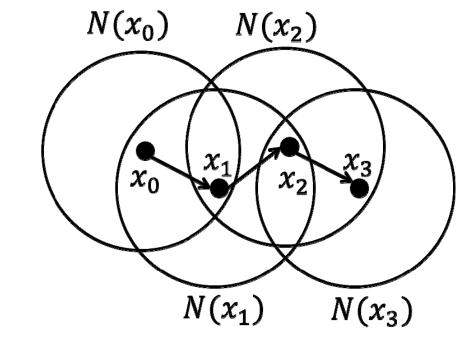
- Greedy Algorithm 

  Steepest Descent Local Search
- "Global opt=Local opt"→ Greedy works

#### Repeat:

- find local min  $y \in N(x)$
- set x := y

Stop if: *x* is local opt



- Greedy terminates in finite # of iters. (can be exponential)
- (pseudo)-poly. iteration?

## **Greedy Algorithm: L<sup>1</sup>-convex Function**

L<sup>1</sup>-convex fn: global opt  $\leftarrow \rightarrow$  local opt w.r.t.  $N(p) = p \pm \{0,1\}^n$ 

 $\rightarrow$  Greedy works with N(p)

Thm:  $p_0$ : initial sol.,  $p_*$ : "nearest" global opt

 $\rightarrow$  # of iter  $\leq 2||p_* - p_0||_{\infty}$ 

(Kolmogorov-Shioura09)

Key Lemma: in each iteration,

"positive gap"  $\max\{p_*(i)-p(i)\mid p_*(i)-p(i)>0\}$  decreases, or "negative gap"  $\min\{p_*(i)-p(i)\mid p_*(i)-p(i)<0\}$  increases

$$p_*(i) - p(i)$$
 positive gap  $i = 1, ..., n$  negative gap

## **Greedy Algorithm: M<sup>1</sup>-convex Function**

M<sup>□</sup>-convex fn:

global opt  $\leftarrow \rightarrow$  local opt w.r.t.  $N(x) = x + \{\chi_i - \chi_j, + \chi_i, -\chi_j\}$ 

 $\rightarrow$  Greedy works with N(x)

Thm:  $x_0$ : initial sol.,  $x_*$ : "nearest" global opt

 $\rightarrow$  # of iter  $\leq ||x_* - x_0||_1$ 

(Murota03)

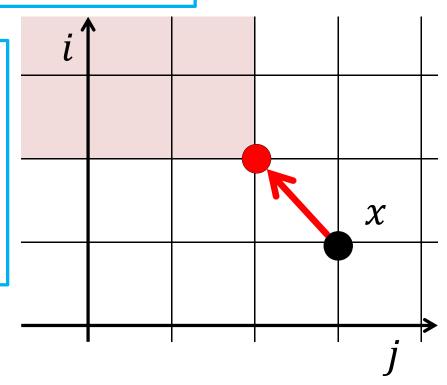
#### **Minimizer Cut Thm:**

 $x + \chi_i - \chi_i \in N(x)$ : local opt

 $\rightarrow \exists x_*$ : global opt s.t.

$$x_*(i) > x(i), x_*(j) < x(j)$$

(Shioura98)



## **Greedy Algorithm for Special Case**

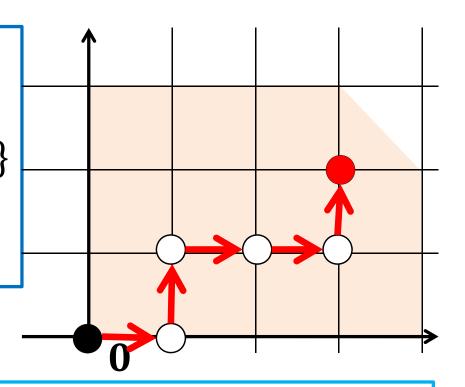
Special Case: **0** is unique minimal in dom  $f = \{x | f(x) < +\infty\}$ 

Initial vector: y = (0, ..., 0)

#### Repeat:

- find  $i \in \arg\min\{f(y + \chi_i) | i \in N\}$
- set  $y := y + \chi_i$

Stop if:  $f(y + \chi_i) \ge f(y) \ (\forall i \in N)$ 



#### Minimizer Cut Thm 2:

(i) *i* minimizes  $f(y + \chi_i) \rightarrow \exists x_*$ : opt. s.t.  $x_*(i) > y(i)$ 

(ii) 
$$f(y) \le f(y + \chi_i)$$
 ( $\forall i$ )  $\Rightarrow \exists x_* : \text{opt. s.t. } \sum_i x_*(i) \le \sum_i y(i)$ 

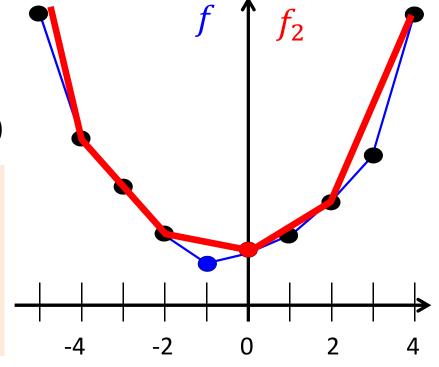
## **Scaling and Proximity**

## Scaling and Proximity: General Case

```
Scaling f_{\alpha} of f: \mathbb{Z}^n \to \mathbb{R} \cup \{+\infty\} (\alpha \in \mathbb{Z}_+: \text{ scaling parameter}) = restriction of f to \alpha \mathbb{Z}^n f_{\alpha}: \alpha \mathbb{Z}^n \to \mathbb{R} \cup \{+\infty\}, \qquad f_{\alpha}(x) = f(x)
```



global minimizer exists
in a neighborhood of
scaled (local) minimizer



- → efficient algorithm
- univariate convex fn

Prop:



- || — || is bounded? How large?

## Scaling and Proximity: L<sup>1</sup>-convex Function

Thm:  $\forall p_{\alpha}$ : scaled local minimizer,  $\exists p_{*}$ : global minimizer

s.t. 
$$||p_* - p_\alpha||_{\infty} \le (n-1)(\alpha-1)$$

(Iwata-Shigeno03)

**Prop**:  $\forall \alpha$ :  $g_{\alpha}$  is  $L^{\natural}$ -convex fn

- → scaled (local) minimizer can be computed efficiently
- → efficient scaling algorithm

**Step 0**:  $\alpha$ : =sufficiently large integer

Step 1: find minimizer  $x_{\alpha}$  of  $g_{\alpha}$  in a neighborhood of  $x_{2\alpha}$ 

Step 2: if  $\alpha = 1$ , then stop (x is global opt)

Step 3: set  $\alpha := \alpha/2$ ; go to Step 1

## Scaling and Proximity: M<sup>1</sup>-convex Function

**Thm**:  $\forall x_{\alpha}$ : scaled local minimizer,  $\exists x_*$ : global minimizer

s.t. 
$$||x_* - x_{\alpha}||_{\infty} \le (n-1)(\alpha-1)$$

(Moriguchi-Murota-Shioura02)

**But**:  $f_{\alpha}$  is NOT M<sup> $\natural$ </sup>-convex

- → difficult to compute a scaled local minimizer
- → simple scaling algo does not work
- apply scaling approach in a different way

## Scaling Algorithm for Special Case

Special Case: (0, ..., 0) is unique minimal vector in dom f

apply scaling technique to Greedy Algo

#### Update of x using step size $\alpha$ :

- $\bullet$  if  $f(x + \alpha \chi_i) < \infty$ , set  $x \coloneqq x + \alpha \chi_i$
- otherwise, set  $x \coloneqq x + \beta \chi_i$  with maximum  $\beta$  under  $f(x + \beta \chi_i) < \infty$

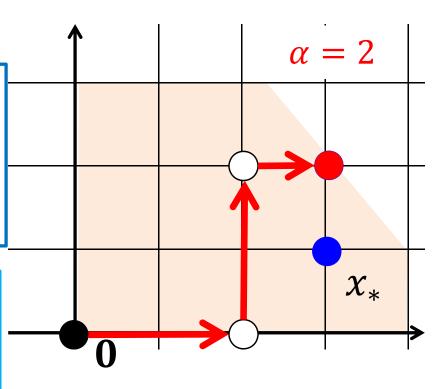
**Prop**:  $x_{\alpha}$ : output of scaled greedy algo,

 $\exists x_*$ : global minimizer

s.t. 
$$||x_* - x_\alpha||_{\infty} \le \alpha - 1$$

→ efficient algorithm

X can be extended to general M<sup>□</sup>-convex fn



# Continuous Relaxation and Proximity

## Continuous Relaxation and Proximity: General Case

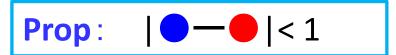
**Assumption:** convex fn  $\tilde{f}: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$  with  $\tilde{f}(x) = f(x) \ (\forall x \in \mathbb{Z}^n)$  is given

#### "Proximity Thm":

int. minimizer o exists

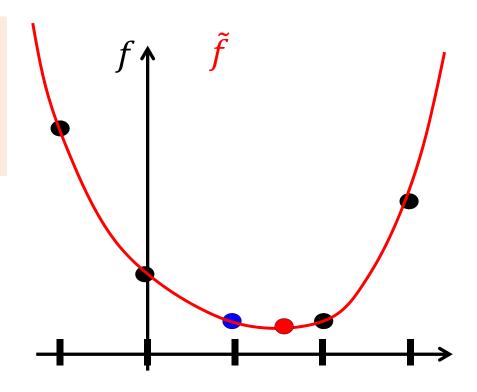
in a neighborhood of real minimizer

- → efficient algorithm
- univariate convex fn









## Continuous L<sup>4</sup>-convex Function

Assumption: continuous L<sup> $\beta$ </sup>-convex fn  $\tilde{g}: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$  with  $\tilde{g}(p) = g(p) \ (\forall p \in \mathbb{Z}^n)$  is given

Def: convex fn  $g: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$  is continuous L<sup>\(\frac{1}{2}\)</sup>-convex  $\widehat{g}: \mathbb{R}^{n+1} \to \mathbb{R} \cup \{+\infty\}$  is submodular  $\widehat{g}(p_0, p_1, ..., p_n) = g(p_1 - p_0, ..., p_n - p_0)$ 

(Murota-Shioura00,04)

#### Prop:

- restriction of cont. L<sup>\(\beta\)</sup>-conv. fn on  $\mathbb{Z}^n \rightarrow \text{discrete L}^\(\beta\)-conv.$
- $\forall$  discrete L<sup>\beta</sup>-conv. fn g,  $\exists$  cont. L<sup>\beta</sup>-conv. fn f s.t.  $f(p) = g(p) \ (\forall p \in \mathbb{Z}^n)$

## Continuous Relaxation and Proximity: L<sup>4</sup>-convex Function

Assumption: continuous L<sup> $\natural$ </sup>-convex fn  $\tilde{g}: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$  with  $\tilde{g}(p) = g(p) \ (\forall p \in \mathbb{Z}^n)$  is given

Thm:  $\forall p_{\mathbb{R}}$ : real minimizer,  $\exists p_*$ : integral minimizer s.t.  $||p_*-p_{\mathbb{R}}||_{\infty} \leq n-1$ 

(Moriguchi-Tsuchimura09)

if  $p_{\mathbb{R}}$  can be computed efficiently (e.g., quadratic  $\widetilde{g}$ )

efficient algorithm for int. minimizer

## Continuous M<sup>4</sup>-convex Function

**Assumption:** continuous  $M^{\natural}$ -convex fn  $\tilde{f}: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$  with  $\tilde{f}(x) = f(x) \ (\forall x \in \mathbb{Z}^n)$  is given

```
Def: convex fn f: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\} is continuous \mathbb{M}^{\natural}-convex \P \forall x, y \in \mathbb{Z}^n, \forall i : x(i) > y(i), \exists \lambda_0 \in \mathbb{R}_+:

(i) f(x) + f(y) \ge f(x - \lambda \chi_i) + f(y + \lambda \chi_i) (\forall \lambda \in [0, \lambda_0]), or

(ii) \exists j : x(j) < y(j) s.t.

f(x) + f(y) \ge f(x - \chi_i + \chi_j) + f(y + \chi_i - \chi_j) (\forall \lambda \in [0, \lambda_0])
```

(Murota-Shioura00,04)

**Prop**:  $\forall$  discrete  $\mathsf{M}^{\natural}$ -conv. fn g,  $\exists$  cont.  $\mathsf{M}^{\natural}$ -conv. fn f s.t.  $f(x) = g(x) \ (\forall x \in \mathbb{Z}^n)$ 

 $\times$  restriction of cont.  $M^{\natural}$ -conv. fn on  $\mathbb{Z}^n$  is NOT discrete  $M^{\natural}$ -conv.

## Continuous Relaxation and Proximity: M<sup>4</sup>-convex Function

**Assumption:** continuous  $M^{\natural}$ -convex fn  $\tilde{f}: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ 

with 
$$\tilde{f}(x) = f(x) \ (\forall x \in \mathbb{Z}^n)$$
 is given

**Thm**:  $\forall x_{\mathbb{R}}$ : real minimizer,  $\exists x_*$ : integral minimizer

s.t. 
$$||x_* - x_{\mathbb{R}}||_{\infty} \le n - 1$$

$$\rightarrow ||x_* - x_{\mathbb{R}}||_1 \le n(n-1)$$
 (Moriguchi-Shioura-Tsuchimura11)

Special case: separable convex fn on polymatroid:

$$f(x) = \sum_{i=1}^{n} \varphi_i(x(i))$$
 if  $x \in P$ 

**Thm**:  $\forall x_{\mathbb{R}}$ : real minimizer,  $\exists x_*$ : integral minimizer

s.t. 
$$||x_* - x_{\mathbb{R}}||_1 \le 2(n-1)$$

if  $x_{\mathbb{R}}$  can be computed efficiently (e.g., quadratic  $ilde{f}$ )

→ efficient algorithm for int. minimizer

### **Outline of Talk**

- Overview of Discrete Convex Analysis
- Definitions of L-/M-convex Functions
- Algorithms for Unconstrained Minimization
  - Greedy
  - Scaling
  - Continuous Relaxation
- Algorithms for More Difficult Problems

## Minimization of Sum of Two M<sup>4</sup>-convex Fns

- Minimization of Sum of two M<sup> $\natural$ </sup>-convex fns  $f_1, f_2: \mathbb{Z}^n \to \mathbb{R} \cup \{+\infty\}$ 
  - sum of two M<sup>□</sup>-convex fns is NOT M<sup>□</sup>-convex
  - contains Polymatroid constrained problem:

```
Minimize f_1(x) sub. to x \in P
```

```
Minimize f_1(x) + f_2(x)
```

```
where f_2(x) = 0 (if x \in P), = +\infty (otherwise)
```

- generalization of polymatroid intersection problem
- poly.-time solvable
  - polymatroid intersection algorithms can be extended
  - use new techniques & analysis

(Murota96,99,Iwata-Shigeno03,Iwata-Moriguchi-Murota05)

## Minimization of Sum of Many M<sup>4</sup>-convex Fns

Minimization of Sum of more than two M<sup>□</sup>-convex fns

$$f_1, \dots, f_m \colon \mathbb{Z}^n \to \mathbb{R} \cup \{+\infty\}$$

– contains Polymatroid constrained problem:

Minimize 
$$\sum_{j=1}^{m-1} f_j(x)$$
 sub. to  $x \in P$ 

- generalization of three polymatroid intersection problem
  - NP-hard
- (1-1/e)-approximation (for maximization version) for monotone  $f_1, ..., f_{m-1}$  & polymatroid const. (Shioura09)
  - continuous relaxation + pipage rounding (Calinescu et al. 07)
  - Key Property: convex closure of M<sup>□</sup>-convex fn can be computed in poly-time → cont. relaxation in poly-time

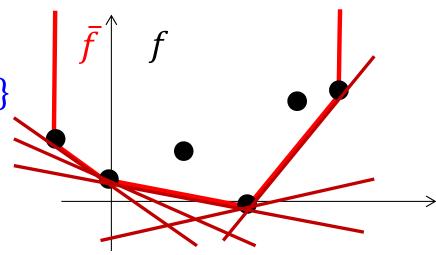
## Convex Closure of M<sup>4</sup>-convex Fn

```
convex closure \bar{f}: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\} of f: \mathbb{Z}^n \to \mathbb{R} \cup \{+\infty\} --- point-wise maximal convex fn satisfying \bar{f}(y) \leq f(y) (\forall y \in \mathbb{Z}^n)
```

$$\bar{f}(x) = \max\{p^T x + \alpha \mid p \in \mathbb{R}^n, \alpha \in \mathbb{R}, p^T y + \alpha \le f(y) (\forall y \in \mathbb{Z}^n)\}$$

Define  $g(p) = \min\{f(y) - p^T y | y \in \mathbb{Z}^n\}$ 

 $\rightarrow \bar{f}(x) = \max\{p^T x + g(p) \mid p \in \mathbb{R}^n\}$ 



- **Prop**: (i) restriction of g on  $\mathbb{Z}^n$  is  $L^{\natural}$ -concave
  - (ii) if f is integer-valued
  - $\rightarrow$  max{ $p^Tx + g(p) \mid p \in \mathbb{R}^n$ } has integral opt
  - → reduced to L<sup>4</sup>-concave fn maximization

## M<sup>4</sup>-concave Function Maximization with Knapsack Constraints

- Maximization of  $M^{\natural}$ -concave fn  $f : \mathbb{Z}^n \to \mathbb{R} \cup \{-\infty\}$ under knapsack constraints  $c_j^T x \leq b_j \ (j=1,\ldots,m)$ 
  - NP-hard
- polynomial-time approximation scheme (Shioura11)
  - continuous relaxation + simple rounding
  - near integrality of continuous opt. solution
  - Key Property: convex closure of M<sup>□</sup>-convex fn can be computed in poly-time → cont. relaxation in poly-time